Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Dietary effect
Check title to add to marked list
Assessment of dietary exposure and effect in humans : The role of NMR
Duynhoven, John P.M. Van; Jacobs, Doris M. - \ 2016
Progress in Nuclear Magnetic Resonance Spectroscopy 96 (2016). - ISSN 0079-6565 - p. 58 - 72.
Dietary effect - Dietary exposure - Metabolite identification - Metabolomics - NMR

In human nutritional science progress has always depended strongly on analytical measurements for establishing relationships between diet and health. This field has undergone significant changes as a result of the development of NMR and mass spectrometry methods for large scale detection, identification and quantification of metabolites in body fluids. This has allowed systematic studies of the metabolic fingerprints that biological processes leave behind, and has become the research field of metabolomics. As a metabolic profiling technique, NMR is at its best when its unbiased nature, linearity and reproducibility are exploited in well-controlled nutritional intervention and cross-sectional population screening studies. Although its sensitivity is less good than that of mass spectrometry, NMR has maintained a strong position in metabolomics through implementation of standardisation protocols, hyphenation with mass spectrometry and chromatographic techniques, accurate quantification and spectral deconvolution approaches, and high-throughput automation. Thus, NMR-based metabolomics has contributed uniquely to new insights into dietary exposure, in particular by unravelling the metabolic fates of phytochemicals and the discovery of dietary intake markers. NMR profiling has also contributed to the understanding of the subtle effects of diet on central metabolism and lipoprotein metabolism. In order to hold its ground in nutritional metabolomics, NMR will need to step up its performance in sensitivity and resolution; the most promising routes forward are the analytical use of dynamic nuclear polarisation and developments in microcoil construction and automated fractionation.

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.