Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==LC–MS
Check title to add to marked list
Genetic variation in phytochemicals in leaves of pepper (Capsicum) in relation to thrips resistance
Maharijaya, Awang ; Vosman, Ben ; Pelgrom, Koen ; Wahyuni, Yuni ; Vos, Ric C.H. de; Voorrips, Roeland E. - \ 2019
Arthropod-Plant Interactions 13 (2019)1. - ISSN 1872-8855 - 9 p.
Capsianosides - Flavonoids - LC–MS - Metabolomics - mQTL

Phytochemicals not only determine the taste and smell of plants and their products, they also play a crucial role in resistance against pests and pathogens. In previous work, we identified a form of resistance to thrips (Frankliniella occidentalis) expressed in leaves of pepper (Capsicum annuum). In the current study, we characterized leaves of an interspecific C. annuum × C. chinense F2 population for variation in their global phytochemical composition by an untargeted metabolomics approach. Quantitative trait locus (QTL) mapping resulted in metabolite QTLs (mQTLs) for 304 of the 674 metabolites detected. We compared the QTL mapping results to those obtained earlier on fruits in the same population. Very different QTL hotspots were found, suggesting that the metabolite composition of leaves and fruits is regulated independently. Six leaf mQTLs co-located with the major QTL for resistance to thrips, which we previously identified in the same F2 population. Four of them were significantly correlated to thrips resistance, including two diterpene glycosides and a flavonoid compound which may indicate a possible role of these metabolites in thrips resistance. If a causal role of some of these metabolites in resistance can be proven this will help in the identification of the causal gene(s) and it may provide leads for the identification of other sources of thrips resistance in Capsicum and in other species.

Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies
Ulaszewska, Marynka M. ; Weinert, Christoph H. ; Trimigno, Alessia ; Portmann, Reto ; Andres Lacueva, Cristina ; Badertscher, René ; Brennan, Lorraine ; Brunius, Carl ; Bub, Achim ; Capozzi, Francesco ; Cialiè Rosso, Marta ; Cordero, Chiara E. ; Daniel, Hannelore ; Durand, Stéphanie ; Egert, Bjoern ; Ferrario, Paola G. ; Feskens, Edith J.M. ; Franceschi, Pietro ; Garcia-Aloy, Mar ; Giacomoni, Franck ; Giesbertz, Pieter ; González-Domínguez, Raúl ; Hanhineva, Kati ; Hemeryck, Lieselot Y. ; Kopka, Joachim ; Kulling, Sabine E. ; Llorach, Rafael ; Manach, Claudine ; Mattivi, Fulvio ; Migné, Carole ; Münger, Linda H. ; Ott, Beate ; Picone, Gianfranco ; Pimentel, Grégory ; Pujos-Guillot, Estelle ; Riccadonna, Samantha ; Rist, Manuela J. ; Rombouts, Caroline ; Rubert, Josep ; Skurk, Thomas ; Sri Harsha, Pedapati S.C. ; Meulebroek, Lieven Van; Vanhaecke, Lynn ; Vázquez-Fresno, Rosa ; Wishart, David ; Vergères, Guy - \ 2018
Molecular Nutrition & Food Research 63 (2018)1. - ISSN 1613-4125
GC–MS - LC–MS - metabolomics - NMR - nutrition
The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state-of-the-art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful “tips and tricks” along the analytical workflow.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.