Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==Phenotype prediction
Check title to add to marked list
More than just a gut feeling : constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes
Ark, Kees C.H. van der; Heck, Ruben G.A. van; Martins Dos Santos, Vitor A.P. ; Belzer, Clara ; Vos, Willem M. de - \ 2017
Microbiome 5 (2017)1. - ISSN 2049-2618 - p. 78 - 78.
Culturing - Genome-scale metabolic model - Interspecies interactions - Microbiome - Microbiota - Minimal media - Phenotype prediction
The human gut is colonized with a myriad of microbes, with substantial interpersonal variation. This complex ecosystem is an integral part of the gastrointestinal tract and plays a major role in the maintenance of homeostasis. Its dysfunction has been correlated to a wide array of diseases, but the understanding of causal mechanisms is hampered by the limited amount of cultured microbes, poor understanding of phenotypes, and the limited knowledge about interspecies interactions. Genome-scale metabolic models (GEMs) have been used in many different fields, ranging from metabolic engineering to the prediction of interspecies interactions. We provide showcase examples for the application of GEMs for gut microbes and focus on (i) the prediction of minimal, synthetic, or defined media; (ii) the prediction of possible functions and phenotypes; and (iii) the prediction of interspecies interactions. All three applications are key in understanding the role of individual species in the gut ecosystem as well as the role of the microbiota as a whole. Using GEMs in the described fashions has led to designs of minimal growth media, an increased understanding of microbial phenotypes and their influence on the host immune system, and dietary interventions to improve human health. Ultimately, an increased understanding of the gut ecosystem will enable targeted interventions in gut microbial composition to restore homeostasis and appropriate host-microbe crosstalk.
Genomic prediction of growth in pigs based on a model including additive and dominance effects
Lopes, M.S. ; Bastiaansen, J.W.M. ; Janss, L. ; Knol, E.F. ; Bovenhuis, H. - \ 2016
Journal of Animal Breeding and Genetics (2016). - ISSN 0931-2668 - p. 180 - 186.
Phenotype prediction - SNP - Variance component

Independent of whether prediction is based on pedigree or genomic information, the focus of animal breeders has been on additive genetic effects or 'breeding values'. However, when predicting phenotypes rather than breeding values of an animal, models that account for both additive and dominance effects might be more accurate. Our aim with this study was to compare the accuracy of predicting phenotypes using a model that accounts for only additive effects (MA) and a model that accounts for both additive and dominance effects simultaneously (MAD). Lifetime daily gain (DG) was evaluated in three pig populations (1424 Pietrain, 2023 Landrace, and 2157 Large White). Animals were genotyped using the Illumina SNP60K Beadchip and assigned to either a training data set to estimate the genetic parameters and SNP effects, or to a validation data set to assess the prediction accuracy. Models MA and MAD applied random regression on SNP genotypes and were implemented in the program Bayz. The additive heritability of DG across the three populations and the two models was very similar at approximately 0.26. The proportion of phenotypic variance explained by dominance effects ranged from 0.04 (Large White) to 0.11 (Pietrain), indicating that importance of dominance might be breed-specific. Prediction accuracies were higher when predicting phenotypes using total genetic values (sum of breeding values and dominance deviations) from the MAD model compared to using breeding values from both MA and MAD models. The highest increase in accuracy (from 0.195 to 0.222) was observed in the Pietrain, and the lowest in Large White (from 0.354 to 0.359). Predicting phenotypes using total genetic values instead of breeding values in purebred data improved prediction accuracy and reduced the bias of genomic predictions. Additional benefit of the method is expected when applied to predict crossbred phenotypes, where dominance levels are expected to be higher.

Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.