Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==cyst germination
Check title to add to marked list
A Phytophthora sojae G protein alpha subunit is involved in chemotaxis to soybean isoflavones
Hua, C. ; Wang, Y. ; Zheng, X. ; Dou, D. ; Zhang, Z. ; Govers, F. - \ 2008
Eukaryotic Cell 7 (2008)12. - ISSN 1535-9778 - p. 2133 - 2140.
transcription factor - zoospore encystment - hyphal growth - saccharomyces-cerevisiae - signal-transduction - cyst germination - botrytis-cinerea - beta-subunit - infestans - oomycete
For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis
Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome
Judelson, H.S. ; Ah-Fong, A.M.V. ; Aux, G. ; Avrova, A.O. ; Bruce, C. ; Cakir, C. ; Cunha, L. da; Grenville-Briggs, L. ; Latijnhouwers, M. ; Ligterink, W. ; Meijer, H.J.G. ; Roberts, S. ; Thurber, C.S. ; Whisson, S.C. ; Birch, P.R.J. ; Govers, F. ; Kamoun, S. ; West, P. van; Windass, J. - \ 2008
Molecular Plant-Microbe Interactions 21 (2008)4. - ISSN 0894-0282 - p. 433 - 447.
host-plant cells - zoospore motility - parallel analysis - cyst germination - potato infection - protein-kinase - rt-pcr - rna - sporulation - family
Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.
Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.