Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 7 / 7

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==daidzein
Check title to add to marked list
The influence of phase II conjugation on the biological activity of flavonoids
Beekmann, K. - \ 2016
University. Promotor(en): Ivonne Rietjens; Peter van Bladeren, co-promotor(en): L. Actis-Goretta. - Wageningen : Wageningen University - ISBN 9789462577640 - 171 p.
flavonoids - biological activity - in vitro - biosynthesis - peroxisomes - microarrays - daidzein - genistein - oestrogen receptors - isoflavones - quercetin - kaempferol - serine proteinases - threonine - flavonoïden - biologische activiteit - biosynthese - peroxisomen - daidzin - genisteïne - oestrogeenreceptoren - isoflavonen - quercetine - serine proteïnasen

Flavonoid consumption is often correlated with a wide range of health effects, such as the prevention of cardiovascular diseases, neurodegenerative diseases, and diabetes. These effects are usually ascribed to the activity of the parent flavonoid aglycones, even though these forms of the flavonoids generally have a low systemic bioavailability. During uptake, flavonoids undergo phase II metabolism and are present in the systemic circulation nearly exclusively as conjugated metabolites. The aim of this thesis was to study the effect of conjugation on the biological activity of selected flavonoids towards different endpoints relevant for human health. To this end, conjugation with glucuronic acid was taken as the model type of conjugation because this modification is generally observed to be the most important metabolic conjugation reaction for flavonoids in man.

A review of scientific literature published until early 2012 reveals that metabolic conjugation can affect the biological activity of flavonoids in different ways. Conjugation can increase, decrease, inverse or not affect the biological activity, depending on the flavonoid, the type and position of conjugation, the endpoint studied, and the assay system used. Based on the literature reviewed it is concluded that the effect of conjugation has to be studied on a case-by-case basis.

As the research on the biological activity of biologically relevant flavonoid conjugates is often hampered by the generally low commercial availability and high prices of these conjugates, a simple and versatile method for the biosynthesis of metabolically relevant flavonoid conjugates is described. Using this method, relevant conjugates can be prepared from different flavonoid substrates in sufficient quantities for in vitro bioassays. Further, an efficient strategy for the identification of these flavonoid conjugates by LC-MS and 1H-NMR using MetIDB (Metabolite Identification Database), a publicly accessible database of predicted and experimental 1H-NMR spectra of flavonoids, is presented.

To study the effect of conjugation on the biological activities of flavonoids, several different assay systems and endpoints were used to study the activity of different flavonoids and their conjugates. The effects of quercetin, kaempferol, and their main plasma conjugates quercetin-3-O-glucuronide and kaempferol-3-O-glucuronide (K-3G) on different endpoints related to peroxisome proliferator-activated receptor (PPAR)-γ were studied. PPAR-γ activation is reported to have positive health effects related to adipogenesis, insulin resistance and inflammation. The presented results show that the flavonoid aglycones increased PPAR-γ mediated gene expression in a stably transfected reporter gene cell line, and that glucuronidation diminished this effect. These observed increases in reporter gene expression were accompanied by increased PPAR-γ receptor-mRNA expression upon exposure to kaempferol, an effect that was also reduced by glucuronidation. Using the cell-free Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction (MARCoNI) it was demonstrated that, unlike the known PPAR-γ agonist rosiglitazone, neither the flavonoid aglycones nor the conjugates are agonistic ligands of the PPAR-γ receptor. Supporting the hypothesis that the tested compounds have a different mode of action from normal LBD agonism, quercetin appeared to synergistically increase the effect of rosiglitazone in the reporter gene assay. The modes of action behind the observed effects remain to be elucidated and might include effects on protein kinase activities affecting expression of the PPAR-γ receptor, or posttranscriptional modifications of PPAR-γ.

Another type of nuclear receptor known to be targeted by certain flavonoids are the estrogen receptor (ER)α- and ERβ. ERs are the main targets of estrogenic compounds, and upon their activation different transcriptional responses with opposite effects on cell proliferation and apoptosis are elicited; ERα activation stimulates cell proliferation, while ERβ activation causes apoptosis and reduces ERα mediated induction of cell proliferation. Using the MARCoNI assay, the intrinsic estrogenic effects of the two main dietary isoflavones daidzein and genistein, and their plasma conjugates daidzein-7-O-glucuronide and genistein-7-O-glucuronide on the ligand induced coregulator binding of ERα- and ERβ-LBD were studied and compared to the effect of the positive control 17β-estradiol (E2). The results show that the tested isoflavone compounds are less potent agonists of ERα- and ERβ-LBD than E2, although they modulate the LBD-coregulator interactions in a manner similar to E2. Genistein is shown to be a more potent agonist than daidzein for both receptor subtypes. While in the MARCoNI assay genistein had a strong preference for ERβ-LBD activation over ERα-LBD activation, daidzein had a slight preference for ERα-LBD activation over ERβ-LBD activation. Glucuronidation reduced the intrinsic agonistic activities of both daidzein and genistein to induce ERα-LBD and ERβ-LBD - coregulator interactions and increased their average half maximal effective concentrations (EC50s) by 8 to 4,400 times. The results presented further show that glucuronidation changed the preferential activation of genistein from ERβ-LBD to ERα-LBD and increased the preferential activation of daidzein for ERα-LBD; this is of special interest given that ERβ activation, which is counteracting the possible adverse effects of ERα activation, is considered one of the supposedly beneficial modes of action of isoflavones.

Many flavonoids are reported to be inhibitors of protein kinases. To study the effect of conjugation on the inhibition of serine/threonine protein kinases by flavonoids, kaempferol and its main plasma conjugate K-3G were selected as model compounds. Protein kinases are involved in a wide range of physiological processes by controlling signaling cascades and regulating protein functions; modulation of their activities can have a wide range of biological effects. The inhibitory effects of kaempferol, K-3G, and the broad-specificity protein kinase inhibitor staurosporine on the phosphorylation activity of recombinant protein kinase A (PKA) and of a lysate prepared from the hepatocellular carcinoma cell line HepG2 were studied using a microarray platform that determines the phosphorylation of 141 putative serine/threonine phosphorylation sites derived from human proteins. The results reveal that glucuronidation reduces the intrinsic potency of kaempferol to inhibit the phosphorylation activity of PKA and HepG2 lysate on average about 16 and 3.5 times, respectively. It is shown that the inhibitory activity of K-3G in the experiments conducted was not caused by deconjugation to the aglycone. Furthermore, the results show that kaempferol and K-3G, unlike the broad-specificity protein kinase inhibitor staurosporine, did not appear to inhibit all protein kinases present in the HepG2 lysate to a similar extent, indicating that kaempferol selectively targets protein kinases, a characteristic that appeared not to be affected by glucuronidation. The fact that K-3G appeared to be only a few times less potent than kaempferol implies that K-3G does not necessarily need to be deconjugated to the aglycone to exert potential inhibitory effects on protein kinases.

The results obtained in the present thesis support the conclusion that glucuronidation of flavonoids does not necessarily abolish their activity and that flavonoid glucuronides may be biologically active themselves, albeit at higher concentrations than the parent aglycones. In line with the conclusions from the earlier literature review, an updated literature review on the effect of conjugation on the biological activity of flavonoids concludes that that the effect of conjugation on the biological activity of flavonoids depends on the type and position of conjugation, the endpoint studied and the assay system used. Based on the results described and the literature reviewed in this thesis, several recommendations and perspectives for future research are formulated. Several methodological considerations are formulated that need to be taken into account when studying the biological activity of flavonoids and their conjugates to avoid confounding results. Further, the relevance of the gut microbiome for flavonoid bioactivity is highlighted, and considerations regarding the pharmacokinetics and pharmacodynamics of flavonoids in vivo are formulated. Altogether, it can be concluded that circulating flavonoid conjugates may exert biological activities themselves, and that understanding these is a prerequisite to successfully elucidate the mechanisms of action behind the biological activities linked to flavonoid consumption.

Nutrikinetic modeling reveals order of genistein phase II metabolites appearance in human plasma
Smit, S. ; Szymanska, E. ; Kunz, I. ; Gomez Roldan, V. ; Tilborg, M.W.E.M. van; Weber, P. ; Prudence, K. ; Kloet, F.M. van der; Duynhoven, J.P.M. van; Smilde, A.K. ; Vos, R.C.H. de; Bendik, I. - \ 2014
Molecular Nutrition & Food Research 58 (2014)11. - ISSN 1613-4125 - p. 2111 - 2121.
isoflavone glycosides - soybean isoflavones - healthy-volunteers - bioavailability - pharmacokinetics - disposition - women - daidzein - breast - identification
Scope: Genistein from foods or supplements is metabolized by the gut microbiota and the human body, thereby releasingmany different metabolites into systemic circulation. The order of their appearance in plasma and the possible influence of food format are still unknown. This study compared the nutrikinetic profiles of genistein metabolites. Methods and results: In a randomized cross-over trial, 12 healthy young volunteers were administered a single dose of 30mggenistein provided as a genistein tablet, a genistein tablet in low fat milk, and soy milk containing genistein glycosides. A high mass resolution LC-LTQ-Orbitrap FTMS platform detected and quantified in human plasma: free genistein, seven of its phase-II metabolites and 15 gut-derived metabolites. Interestingly, a novel metabolite, genistein-4- glucuronide-7-sulfate (G-4 G7S) was identified. Nutrikinetic analysis using population-based modeling revealed the order of appearance of five genistein phase II metabolites in plasma: (1) genistein-4,7-diglucuronide, (2) genistein-7-sulfate, (3) genistein-4--sulfate-7-glucuronide, (4) genistein-4-glucuronide, and (5) genistein-7-glucuronide, independent of the food matrix. Conclusion: The conjugated genistein metabolites appear in a distinct order in human plasma. The specific early appearance of G-4 ,7-diG suggests a multistep formation process for the mono and hetero genistein conjugates, involving one or two deglucuronidation steps.
Structural Changes of 6a-Hydroxy-Pterocarpans Upon Heating Modulate Their Estrogenicity
Schans, M.G.M. van de; Vincken, J.P. ; Bovee, T.F.H. ; Cervantes, A.D. ; Logtenberg, M.J. ; Gruppen, H. - \ 2014
Journal of Agricultural and Food Chemistry 62 (2014). - ISSN 0021-8561 - p. 10475 - 10484.
ionization mass-spectrometry - isoflavonoid composition - phytoestrogens - flavonoids - aglycones - genistein - seedlings - daidzein - soy
The isoflavonoid composition of an ethanolic extract of fungus-treated soybean sprouts was strongly altered by a combined acid/heat treatment. UHPLC-MS analysis showed that 6a-hydroxy-pterocarpans were completely converted to their respective, more stable, 6a,11a-pterocarpenes, whereas other isoflavonoids, from the isoflavone and coumestan subclasses, were affected to a much lesser extent (loss of ~15%). Subsequently, mixtures enriched in prenylated 6a-hydroxy-pterocarpans (pools of glyceollin I/II/III and glyceollin IV/VI) or prenylated 6a,11a-pterocarpenes (pools of dehydroglyceollin I/II/III and dehydroglyceollin IV/VI) were purified, and tested for activity on both human estrogen receptors (ERa and ERß). In particular, the response toward ERa changed, from agonistic for glyceollins to antagonistic for dehydroglyceollins. Toward ERß a decrease in agonistic activity was observed. These results indicate that the introduction of a double bond with the concomitant loss of a hydroxyl group in 6a-hydroxy-pterocarpans extensively modulates their estrogenic activity.
Isoflavone extraction from okara using water as extractant
Jankowiak, L. ; Kantzas, N. ; Boom, R.M. ; Goot, A.J. van der - \ 2014
Food Chemistry 160 (2014). - ISSN 0308-8146 - p. 371 - 378.
defatted soybean flakes - soy foods - solubility - soymilk - ph - temperature - stability - genistein - daidzein - proteins
We here report on the use of water as a ‘green’ extraction solvent for the isolation of isoflavones from okara, a by-product of soymilk production. At a low liquid-to-solid ratio of 20 to 1 and 20 °C, 47% of the isoflavones that can be extracted with 70% aqueous ethanol were extracted. The malonyl-glucosides were fully recovered with a ratio of 20 to 1, while ß-glucosides were recovered with an increased liquid-to-solid ratio of 40 to 1. The extraction of aglycones was better at higher ratios, but leveled off before reaching a 100% yield. Temperature hardly affected the total amount of isoflavones. At a 20 to 1 ratio, 20 °C, and pH 10, there was no significant difference (p > 0.05) between isoflavone extraction in water and in 70% aqueous ethanol. The results suggest that water may be used as a green alternative for separation of isoflavones from okara.
Superinduction of estrogen receptor mediated gene expression in luciferase based reporter gene assays is mediated by a post-transcriptional mechanism
Sotoca Covaleda, A.M. ; Bovee, T.F.H. ; Brand, W. ; Velikova, N.R. ; Murk, A.J. ; Vervoort, J.J.M. ; Rietjens, I.M.C.M. - \ 2010
Journal of Steroid Biochemistry and Molecular Biology 122 (2010)4. - ISSN 0960-0760 - p. 204 - 211.
human breast-cancer - in-vitro - er-beta - firefly luciferase - cell-proliferation - genistein - phytoestrogens - metabolites - daidzein - alpha
Several estrogenic compounds including the isoflavonoid genistein have been reported to induce a higher maximal response than the natural estrogen 17ß-estradiol in in vitro luciferase based reporter gene bioassays for testing estrogenicity. The phenomenon has been referred to as superinduction. The mechanism underlying this effect and thus also its biological relevance remain to be elucidated. In the present study several hypotheses for the possible mechanisms underlying this superinduction were investigated using genistein as the model compound. These hypotheses included (i) a non-estrogen receptor (ER)-mediated mechanism, (ii) a role for an ER activating genistein metabolite with higher ER inducing activity than genistein itself, and (iii) a post-transcriptional mechanism that is not biologically relevant but specific for the luciferase based reporter gene assays. The data presented in this study indicate that induction and also superinduction of the reporter gene is ER-mediated, and that superinduction by genistein could be ascribed to stabilization of the firefly luciferase reporter enzyme increasing the bioluminescent signal during the cell-based assay. This indicates that the phenomenon of superinduction may not be biologically relevant but may rather represent a post-transcriptional effect on enzyme stability.
Bioavailability of Genistein and Its Glycoside Genistin As Measured in the Portal Vein of Freely Moving Unanesthetized Rats
Steensma, A. ; Faassen, M. ; Noteborn, H.P.J.M. ; Rietjens, I.M.C.M. - \ 2006
Journal of Agricultural and Food Chemistry 54 (2006)21. - ISSN 0021-8561 - p. 8006 - 8012.
purified soy isoflavones - small-intestine - postmenopausal women - pharmacokinetics - absorption - cancer - glucosides - daidzein - humans - health
The present study describes an in vivo bioavailability experiment for genistein and its glycoside genistin, either as pure compounds or from a soy protein isolate extract, using freely moving unanesthetized rats with a cannulation in the portal vein. The results show that genistein is readily bioavailable, being observed in portal vein plasma at the first point of detection at 15 min after dosing. The AUC0-24h values for total genistein and its conjugates were 54, 24, and 13 ¿M h for genistein, genistin, and an enriched protein soy extract, respectively. These results indicate that the bioavailability of genistein is higher for the aglycon than for its glycoside. Genistin is partly absorbed in its glycosidic form. It is concluded that bioavailability studies based on portal vein plasma levels contribute to insight into the role of the intestine and liver in deglycosylation and uptake characteristics of glycosylated flavonoids
Absorption of isoflavones in humans: effects of food matrix and processing
Pascual-Teresa, S. de; Hallund, J. ; Talbot, D. ; Schroot, J.H. ; Williams, C.H. ; Bugel, S. ; Cassidy, A. - \ 2006
Journal of Nutritional Biochemistry 17 (2006)4. - ISSN 0955-2863 - p. 257 - 264.
soybean isoflavones - chemical-composition - beta-glucosidase - estrogen equol - human-urine - soy - genistein - daidzein - women - phytoestrogens
If soy isoflavones are to be effective in preventing or treating a range of diseases, they must be bioavailable, and thus understanding factors which may alter their bioavailability needs to be elucidated. However, to date there is little information on whether the pharmacokinetic profile following ingestion of a defined dose is influenced by the food matrix in which the isoflavone is given or by the processing method used. Three different foods (cookies, chocolate bars and juice) were prepared, and their isoflavone contents were determined. We compared the urinary and serum concentrations of daidzein, genistein and equol following the consumption of three different foods, each of which contained 50 mg of isoflavones. After the technological processing of the different test foods, differences in aglycone levels were observed. The plasma levels of the isoflavone precursor daidzein were not altered by food matrix. Urinary daidzein recovery was similar for all three foods ingested with total urinary output of 33¿34% of ingested dose. Peak genistein concentrations were attained in serum earlier following consumption of a liquid matrix rather than a solid matrix, although there was a lower total urinary recovery of genistein following ingestion of juice than that of the two other foods.
Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.