Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 3 / 3

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==home-range size
Check title to add to marked list
Quantifying levels of animal activity using camera trap data
Rowcliffe, J.M. ; Kays, R. ; Kranstauber, B. ; Carbone, C. ; Jansen, P.A. - \ 2014
Methods in Ecology and Evolution 5 (2014)11. - ISSN 2041-210X - p. 1170 - 1179.
home-range size - predator avoidance - circadian activity - microtus-arvalis - activity pattern - common vole - time - food - determinants - ecology
1.Activity level (the proportion of time that animals spend active) is a behavioural and ecological metric that can provide an indicator of energetics, foraging effort and exposure to risk. However, activity level is poorly known for free-living animals because it is difficult to quantify activity in the field in a consistent, cost-effective and non-invasive way. 2.This article presents a new method to estimate activity level with time-of-detection data from camera traps (or more generally any remote sensors), fitting a flexible circular distribution to these data to describe the underlying activity schedule, and calculating overall proportion of time active from this. 3.Using simulations and a case study for a range of small- to medium-sized mammal species, we find that activity level can reliably be estimated using the new method. 4.The method depends on the key assumption that all individuals in the sampled population are active at the peak of the daily activity cycle. We provide theoretical and empirical evidence suggesting that this assumption is likely to be met for many species, but may be less likely met in large predators, or in high-latitude winters. Further research is needed to establish stronger evidence on the validity of this assumption in specific cases; however, the approach has the potential to provide an effective, non-invasive alternative to existing methods for quantifying population activity levels.
Toward better application of minimum area requirements in conservation planning
Pe’er, G. ; Tsianou, M.A. ; Franz, K.W. ; Matsinos, Y.G. ; Mazaris, A.D. ; Storch, D. ; Kopsova, L. ; Verboom, J. ; Baguette, M. ; Stevens, V.M. ; Henle, K. - \ 2014
Biological Conservation 170 (2014). - ISSN 0006-3207 - p. 92 - 102.
population viability analysis - home-range size - land-use change - body-size - extinction - mammals - birds - fragmentation - biodiversity - management
The Minimum Area Requirements (MAR) of species is a concept that explicitly addresses area and therefore can be highly relevant for conservation planning and policy. This study compiled a comprehensive database of MAR estimates from the literature, covering 216 terrestrial animal species from 80 studies. We obtained estimates from (a) Population Viability Analyses (PVAs) which explored a range of area-related scenarios, (b) PVAs that provided a fixed value – either MAR or the minimum viable population size (MVP) alongside other area-relevant information, and (c) empirical studies of occupancy patterns in islands or isolated habitat patches across area. We assessed the explanatory power of life-history traits (body mass, feeding guild, generation length and offspring size), environmental variables (average precipitation and temperature), research approach and phylogenetic group on MAR estimates. PVAs exploring area showed strong correlation between MAR and body mass. One to two additional variables further improved the predictive power. PVA reporting fixed MAR, and occupancy-based studies, were better explained by the combination of feeding guild, climatic variables and additional life history traits. Phylogeny had a consistent but usually small contribution to the predictive power of models. Our work demonstrates that estimating the MAR across species and taxa is achievable but requires cautious interpretation. We further suggest that occupancy patterns are likely sensitive to transient dynamics and are therefore risky to use for estimating MAR. PVA-based evaluations enable considering time horizon and extinction probability, two aspects that are critical for future implementation of the MAR concept into policy and management.
The role of wild rodents in spread and transmission of Coxiella burnetii needs further elucidation
Meerburg, B.G. ; Reusken, C.B.E.M. - \ 2011
Wildlife Research 38 (2011)7. - ISSN 1035-3712 - p. 617 - 625.
serological cross-reactions - q-fever infection - home-range size - hantavirus infection - rattus-norvegicus - phase-i - uttar-pradesh - risk-factors - epidemiology - reservoir
Rodents are known to cause massive food losses, but are also implicated as reservoirs for a wide variety of zoonotic pathogens. This review discusses the contribution of rodents in the spread and transmission of Coxiella burnetii, the causative agent of Q-fever. We found that rodents have been implicated as reservoirs for Q-fever, but their role in pathogen maintenance, geographic spread and transmission still remains to be clarified. As there are indications for a role of rodents in Q-fever epidemiology, including during the 2007–10 outbreak in the Netherlands, the overall lack of knowledge on the role of rodents warrants studies into their contribution in transmission of C. burnetii from the sylvatic cycle to the domestic cycle, in within-herd transmission, in transmission to surrounding farms and in direct transmission to humans. Although the basic sylvatic and domestic cycles of C. burnetii infection can operate independently, they will overlap in many instances as many areas in the world are occupied by both domestic and wild animals. This area of Q-fever ecology is of interest and research should focus on this aspect of Q-fever epidemiology and, in particular, on the role of rodents therein. More studies are needed that elicit the exact role of rodents in epidemiology of C. burnetii to further optimise disease control.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.