Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 20 / 449

  • help
  • print

    Print search results

  • export
    A maximum of 250 titles can be exported. Please, refine your queryYou can also select and export up to 30 titles via your marked list.
  • alert
    We will mail you new results for this query: keywords==insect pests
Check title to add to marked list
Potatoes, pathogens and pests : effects of genetic modifi cation for plant resistance on non-target arthropods
Lazebnik, Jenny - \ 2017
University. Promotor(en): Joop van Loon; Marcel Dicke. - Wageningen : Wageningen University - ISBN 9789463431620 - 151
solanum tuberosum - potatoes - oomycetes - phytophthora infestans - genetic engineering - transgenic plants - disease resistance - risk assessment - nontarget organisms - arthropods - insect pests - herbivores - trophic levels - ecological risk assessment - greenhouse experiments - field experimentation - aardappelen - oömyceten - genetische modificatie - transgene planten - ziekteresistentie - risicoschatting - niet-doelorganismen - geleedpotigen - insectenplagen - herbivoren - trofische graden - ecologische risicoschatting - kasproeven - experimenteel veldonderzoek

Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into susceptible potato varieties may alleviate the environmental impact of chemical control. Genetically modified plants are subject to an environmental risk assessment, and this includes testing for risks to the non-target arthropod community associated with the crop. The thesis begins with a review about the main plant defense responses and their role in influencing sequential interactions between herbivores and plant pathogens. The experimental chapters each focus on different aspects of the interaction between potato plants (both resistant and susceptible), the target pathogen (P. infestans) and several non-target insects. With each chapter, the scope widens: from the molecular gene expression in potato leaves in response to sequential attacks, to field scale biodiversity analyses. At the molecular level, one of the main findings was that the genomic position of the Rpi-vnt1 insertion conferring resistance to P. infestans influenced potato gene expression measured in leaves, when interacting with the non-target insect pests Myzus persicae (Green peach aphid) and Leptinotarsa decemlineata (Colorado potato beetle). Insect performance differed between the resistant GM and susceptible non-GM comparator. In the following chapter, the differences in insect performance were tested across a range of conventionally bred cultivars varying in resistance to P. infestans. Differences in M. persicae performance between several cultivars greatly outweighed the differences previously detected between the GM and non-GM comparator. These results are crucial in shaping the way risk is assessed in the context of GM crops, and these results are supported in our experiments assessing effects on biodiversity with pitfall traps in the field. The third trophic level was also addressed by comparing the performance of the parasitoid Aphidius colemani reared on GM and non-GM fed aphids, both with an without exposure to P. infestans. Differences in parasitoid performance were only found on the susceptible cultivar when inoculated with P. infestans. In the last experimental chapter the risk assessment is taken to the field comparing pitfall trap catches over two years and in two countries. Different methods for statistical analysis of biodiversity data were compared to arrive at recommendations for such analysis in the framework of environmental risk assessments. Drawing on these lessons, the discussion ends with ideas for the development of protocols for environmental risk assessments in the light of expected scientific progress in agricultural biotechnology.

Data from: Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?
Gils, S.H. van; Putten, W.H. van der; Kleijn, D. - \ 2016
agro-ecosystem - insect pests - oilseed rape - pollination - rapeseed - Evergestis extimalis - Brassica napus
Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure, and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop yield. We exposed potted plants to all combinations of high and low levels of soil organic matter (SOM) and fertilizer supply, and placed all treatments at a variety of field sites representing a gradient in pollinator visitation rate and pest exposure. We determined the relative contribution of pollinators and pests, SOM and fertilizer supply to yield. We also tested whether SOM can moderate effects of fertilizer on yield and whether soil conditions influence the relationship between above-ground conditions and yield. Increases in pollinator visitation rate and decreases in pest pressure enhanced yield more than increase of fertilizer supply. Although higher SOM content resulted in plants with more biomass and flowers, under our experimental conditions SOM neither enhanced yield, nor influenced effects of fertilizer, pollinators or pests on yield. The relationships between yield, pollinator visitation rate and pest pressure did not depend on the level of fertilization suggesting that the effects of fertilizer application and above-ground (dis)services on yield were additive. In contrast, pollinator visitation rate was more strongly related to yield at low pest pressure than at high pest pressure indicating trade-offs between above-ground services and disservices. Synthesis and applications. Our results show that it is possible to increase oilseed rape yield by enhancing pollination, irrespective of supplying mineral fertilizer. Moreover, the fact that below-ground conditions did not alter the effect of above-ground conditions, suggests that farmers may obtain even higher yields by maximizing both above-ground ecosystem services and external inputs. Further studies are needed to understand at which point the positive relationships between pollinator visitation and yield, as well as between fertilizer and yield will level off. Considering above-ground and below-ground services and inputs in agro-ecosystems in conjunction is crucial in order to optimize external inputs for crop yield from an economic and ecological perspective.
Alternatieven voor neonicotinoïden in de sierteelt onder glas : bestrijding van tabakswittevlieg en bladluis in kuipplanten en perkgoed
Messelink, Gerben ; Vijverberg, Roland ; Bloemhard, Chantal ; Leman, Ada - \ 2016
Bleiswijk : Wageningen UR Glastuinbouw (Rapport GTB 1418) - 42
tuinplanten - containerplanten - insectenplagen - bemisia tabaci - aphididae - kasgewassen - glastuinbouw - biologische bestrijding - insecticiden - lecanicillium muscarium - entomopathogene schimmels - roofinsecten - bedding plants - container grown plants - insect pests - greenhouse crops - greenhouse horticulture - biological control - insecticides - entomogenous fungi - predatory insects
The control of phloem feeding insects such as aphids, whiteflies, cicadas, mealybugs, scales and plant feeding bugs in greenhouse crops still largely depends on the use of neonicotinoids. However, the increased found negative effects on the environment will soon results in a total ban on the use of these pesticides. In this project we summarized the possible alternative control measures with pesticides and biological control agents. Furthermore, a number of preventive and curative control measures was evaluated for the control of aphids in bedding plants and the tobacco whitefly in container plants, with Calibrachoa and Mandevilla as model plants. An endophytic application of an isolate of the entomopathogenic fungus Lecanicillium gave a clear trend of 25% reduced population growth of aphids on Calibrachoa. Curative control of aphids with lacewings was not effective. Mullein plants enhanced tobacco whitefly control by the predatory bug Macrolophus pygmaeus in Mandevilla and increased predator survival and reproduction. Among the tested alternative control measures, we found 5 products that controlled tobacco whiteflies effectively in Mandevilla.
Plant-mediated insect interactions on a perennial plant : consequences for community dynamics
Stam, J.M. - \ 2016
University. Promotor(en): Marcel Dicke, co-promotor(en): Erik Poelman. - Wageningen : Wageningen University - ISBN 9789462578647 - 254 p.
016-3976 - perennials - brassica oleracea - defence mechanisms - glucosinolates - insect pests - herbivory - plutella xylostella - mamestra brassicae - pieris rapae - herbivore induced plant volatiles - animal communities - population dynamics - overblijvende planten - verdedigingsmechanismen - glucosinolaten - insectenplagen - herbivorie - herbivoor-geinduceerde plantengeuren - diergemeenschappen - populatiedynamica

Plants interact with many organisms around them, and one of the most important groups that a plant has to deal with, are the herbivores. Insects represent the most diverse group of herbivores and have many different ways of using the plant as a food source. Plants can, however, defend themselves against those herbivores, either by constitutive defences, or by traits that are induced upon herbivory. These traits, such as the formation of more trichomes or the production of secondary metabolites, can deter an insect herbivore in its decision to eat from the plant, can be toxic, or otherwise hamper the insect to feed, grow or reproduce. The way a plant responds to herbivory is very specific, depending on the feeding mode or the species of the attacking insect. Furthermore, plant responses to dual herbivory differ from the sum of responses to each herbivore alone. Also the time and order at which multiple insects arrive on a plant, influence the plant’s response. Finally, plant species or populations can show different responses to herbivory. Altogether these factors result in a plant phenotype that the attacking herbivore has to deal with. In addition to the attacker, also subsequently arriving insects will be affected by a change in plant phenotype. Because plants and insects can respond to each other in a continuous chain of interactions, an herbivore early in the season can indirectly affect the later-season community composition through the induced plant response. However, we know only little about the consequences of a dual-herbivore induced plant phenotype for subsequent feeders, and ultimately, the effects on the assembly and dynamics of an insect community as a whole.

The aim of this thesis project was to study the consequences of feeding by multiple insects from the same plant, not only to a subsequent herbivore, but also to the dynamics of a whole insect community over the course of a growing season, and beyond. Furthermore, I studied how the order of herbivore arrival and timing of arrival affected both a next herbivore’s choice and performance in a greenhouse setting, as well as the development of the whole insect community in the field. In addition, I studied how plant populations vary in induced responses, have specific plant-mediated interactions among insect herbivores, and how long these induced responses influence the insect community and plant fitness. Finally, I identified non-additive effects of the history of insect attacks and plant ontogeny to the future insect community.

In the first chapter of this thesis, I introduce the study system. For this project I used several populations of the wild cabbage plant, Brassica oleracea. This is an herbaceous perennial plant that flowers from the second growing season onwards, and supports a large and diverse above-ground arthropod community of more than thirty different species. The plant belongs to the family of Brassicaceae, which is known for the biosynthesis of a group of secondary metabolites, the glucosinolates. These metabolites may deter insects, although some insect species use it as a feeding cue. Two specialist insect herbivores from different feeding guilds, the caterpillar of the diamondback moth Plutella xylostella and the cabbage aphid Brevicoryne brassicae, were used to study their effect as early-season inducer of plant responses either alone or in combination. The caterpillar of the generalist cabbage moth, Mamestra brassicae, was used in bioassays to assess the effects of the induced plant phenotype by single or dual herbivory. Furthermore, in three chapters (Chapters 4, 6 and 7) I have closely studied the composition of the naturally occurring insect community throughout the season for one or two years in a common-garden field setting. In the last of these three chapters, I used the caterpillars of the specialist cabbage white, Pieris rapae, to induce plants at different moments of their ontogeny, while excluding the insect community for varying periods of time by a net or exposing plants to their natural insect community.

In an elaborate literature review, I and my collaborators concluded in chapter 2 that plant responses to dual herbivory evoke different plant responses than the sum of each herbivore alone. This has consequences at all levels from arthropod community assembly to the choice and performance of individual insects. The mechanisms of plant responses to dual herbivory are found in gene expression, hormone production and other molecular processes within the plant. All these aspects of interactions between insects and plants occur and are connected at different time scales.

To follow up on the question how timing plays a role in dual herbivory, we varied the time between, as well as the order of arrival of aphids and/or caterpillars on a plant. We observed that both affected the preference and performance of a subsequently feeding caterpillar (Chapter 3). Mamestra brassicae performed better on plants with a longer time interval between the first and second feeder. Also in a field setting (Chapter 4), the order of herbivore arrival early in the season affected the insect community composition later in the season in two different years, likely through a chain of indirect insect interactions. In this field study, the plant population influenced the outcome of early-season herbivory to later community dynamics. In chapter 5 we found that three plant populations in response to simultaneous aphid and caterpillar attack differed in the expression of two genes that are important for the regulation of herbivore-induced responses. Also, the production of one of two important plant hormones, salicylic acid, responded differently to single or dual herbivory in a unique pattern for each of the plant populations. These different plant responses subsequently negatively affected a next caterpillar on the same plant; M. brassicae growth was impaired on plants which had been fed upon by both aphids and caterpillars, in comparison to control plants. These field and greenhouse studies thus show the implications of dual herbivory beyond effects in the plant; it affects subsequent herbivory, and through a chain of plant-mediated insect interactions, the dynamics of a whole insect community.

In the sixth chapter we show that variation in insect community dynamics can last beyond the moment that the insects were present, even across years. In this field study, the naturally occurring carnivore community influenced the carnivore community composition a year later. Importantly, the herbivore community affected plant fitness across years (but not within years). We propose that such legacy effects are mediated by plant traits, which vary upon insect induction in the first year, and affect the insect community in the next year.

Finally, the history of all insect attacks to a plant up until that moment shape the future insect community by influencing the colonisation of insect species on the plant. Moreover, also plant ontogeny plays a role in shaping the insect community; plant-mediated responses to herbivory at different plant ages resulted in different insect colonisation rates. The most important conclusion from this last data chapter (Chapter 7) is that the two processes, insect community history and plant ontogeny, are non-additive and affect the colonisation of insect species in the same (synergistic) or opposite (antagonistic) direction.

By framing my study results in a time line from minutes to months to years, I show in the general discussion (Chapter 8) that the consequences of dual herbivory for subsequently arriving insects are connected at different time scales. Plant responses to herbivory can occur within hours to days, which affect herbivore choices and performance in the following days and weeks. In their turn, variation of a few days in arrival time of insects may change how plants respond and prioritize their responses to insects throughout the rest of the season. The insects that subsequently arrive on a dual-herbivore induced plant may change the plant phenotype even further and through a chain of insect-plant interactions, the effects on the insects and the plant can last throughout the season, and even across seasons. Furthermore, various factors such as the species of the attacking insect and its feeding guild, the timing after previous attack and the plant age at which herbivory occurs, as well as the genotypic background of the plant, all affect the outcomes of dynamic insect-plant interactions.

The results presented in this thesis thus contribute to the knowledge and interpretation of plant interactions with multiple herbivores. As plants are seldom attacked by a single herbivore, this implies that we have to take into account that multiple herbivory is not the same as the additive effects of single herbivores, and that this has long-lasting consequences for the insect community and the plant. To further understand how plants and insects have adapted to such a dynamic environment, I suggest future research to focus even more on the kinetics of plant physiological responses to dual attack, and to aim at answering the question of how predictable insect communities on a plant really are.

Host-plant resistance to western flower thrips in Arabidopsis
Thoen, Manus P.M. - \ 2016
University. Promotor(en): Marcel Dicke; Harro Bouwmeester, co-promotor(en): Maarten Jongsma. - Wageningen : Wageningen University - ISBN 9789462578807 - 191
arabidopsis thaliana - host plants - insect pests - frankliniella occidentalis - defence mechanisms - pest resistance - genomics - genome analysis - host-seeking behaviour - optical tracking - data analysis - insect plant relations - waardplanten - insectenplagen - verdedigingsmechanismen - plaagresistentie - genomica - genoomanalyse - gedrag bij zoeken van een gastheer - optisch sporen - gegevensanalyse - insect-plant relaties

Western flower thrips is a pest on a large variety of vegetable, fruit and ornamental crops. The damage these minute slender insects cause in agriculture through feeding and the transmission of tospoviruses requires a sustainable solution. Host-plant resistance is a cornerstone of Integrated Pest Management (IPM). Plants have many natural defense compounds and morphological features that aid in the protection against herbivorous insects. However, the molecular and physiological aspects that control host-plant resistance to thrips are largely unknown.

A novel and powerful tool to study host-plant resistance to insects in natural populations is genome-wide association (GWA) mapping. GWA mapping provides a comprehensive untargeted approach to explore the whole array of plant defense mechanisms. The development of high-throughput phenotyping (HTP) systems is a necessity when large plant panels need to be screened for host-plant resistance to insects. An automated video-tracking platform that could screen large plant panels for host-plant resistance to thrips, and dissect host-plant resistance to thrips in component traits related to thrips behavior, was developed. This phenotyping platform allows the screening for host-plant resistance against thrips in a parallel two-choice setup using EthoVision tracking software. The platform was used to establish host-plant preference of thrips with a large plant population of 345 wild Arabidopsis accessions (the Arabidopsis HapMap population) and the method was optimized with two extreme accessions from this population that differed in resistance to thrips. This method can be a reliable and effective high throughput phenotyping tool to assess host-plant resistance to thrips in large plant populations. EthoAnalysis, a novel software package was developed to improve the analyses of insect behavior. There were several benefits from using EthoAnalysis to analyze EthoVision data. The detailed event statistics that could be extracted from EthoAnalysis allows researchers to distinguish detailed differences in moving and feeding behavior of thrips. The potential of this additional information is discussed in the light of quantitative genetic studies.

Stress resistance was studied in the HapMap population on a total of 15 different biotic and abiotic stresses ranging from biotic stresses like insects and nematodes, to abiotic stresses like drought and salt. A multi-trait GWA study to unravel the genetic architecture underlying plant responses to the different stresses was performed. A genetic network in this study revealed little correlation between the plant responses to the different insect herbivores studied (aphids, whiteflies, thrips and caterpillars). For thrips resistance a weak positive correlation with resistance to drought stress and Botrytis, and a negative correlation with resistance to parasitic plants were observed. One of the surprising outcomes of this study was the absence of shared major QTLs for host-plant resistance and abiotic stress tolerance mechanisms. RESISTANCE METHYLATED GENE 1 (RMG1) was one of the candidate genes in this multi-trait GWA study that could be controlling shared resistance mechanisms against many different stresses in Arabidopsis. RMG1 is a nucleotide-binding site Leucine-rich repeat (NB-LRR) disease resistance protein and its potential relation to several resistance/tolerance traits was successfully demonstrated with T-DNA insertion lines.

The 15 stresses were used in a comparison with a metabolomics dataset on this Arabidopsis HapMap population. It was discovered that levels of certain aliphatic glucosinolates correlated positively with the levels of resistance to thrips. This correlation was further investigated with the screening of a RIL (Recombinant Inbred Line) population for resistance to thrips, several knockout mutants and the analysis of co-localization of GWA mapping results between glucosinolates genes and thrips resistance. In a GWA analysis, the C4 alkenyl glucosinolates that correlated the strongest with thrips resistance mapped to the genomic regions containing genes known to regulate the biosynthesis of these compounds. However, thrips resistance did not co-localize with any of the GSL genes, unless a correction for population stratification was omitted. Additional screening of a Cvi x Ler RIL population showed a QTL for thrips resistance on chromosome 2, but no co-localization with any known glucosinolate genes, nor with thrips resistance loci identified by GWA mapping. Knock-out mutants and overexpressors of glucosinolate synthesis genes could also not confirm a causal link between glucosinolates and resistance to thrips. It is possible that the crucial factors that control resistance to thrips may not have been present in sufficient quantities or in the right combinations in the mutants, RILs and NIL screened in this study. Alternatively, the correlation between thrips feeding damage and glucosinolate profiles could be based on independent geographical clines. More research should be conducted to assess which of these explanations is correct.

In the general discussion, the results from this thesis are discussed in a broader perspective. Some prototypes of new phenotyping platforms that could further aid screening for resistance to thrips in the future are presented. Natural variation in host-plant resistance to thrips is compared to the variation in host-plant resistance to aphids and caterpillars. The geographic distribution of host-plant resistance to thrips is not evident in the other insects, in line with the distribution of glucosinolate profiles and other climate factors. The chapter concludes with some suggestions for future research in the field of host-plant resistance to thrips.

Plant responses to multiple herbivory : phenotypic changes and their ecological consequences
Li, Yehua - \ 2016
University. Promotor(en): Marcel Dicke, co-promotor(en): Rieta Gols. - Wageningen : Wageningen University - ISBN 9789462578043 - 165
brassica oleracea - brevicoryne brassicae - aphidoidea - caterpillars - insect pests - pest resistance - defence mechanisms - phenotypes - insect plant relations - parasitoids - natural enemies - herbivore induced plant volatiles - plant-herbivore interactions - genetic variation - rupsen - insectenplagen - plaagresistentie - verdedigingsmechanismen - fenotypen - insect-plant relaties - parasitoïden - natuurlijke vijanden - herbivoor-geinduceerde plantengeuren - plant-herbivoor relaties - genetische variatie

This thesis explores whether aphid-infestation interferes with the plant response to chewing herbivores and whether this impacts performance and behaviour of individual chewing insect herbivores and their natural enemies, as well as the entire insect community. I investigated this using three wild cabbage populations (Brassica oleracea) that are known to differ in inducible secondary chemistry, to reveal whether patterns were consistent.

A literature review on recent developments in the field of plant interactions with multiple herbivores (Chapter 2) addressed how plant traits mediate interactions with various species of the associated insect community and their dynamics. In addition, the mechanisms underlying phenotypic changes in response to different herbivores were discussed from the expression of defence-related genes, phytohormones and secondary metabolites in plants to their effects on the performance and behaviour of individual insects as well as the entire insect community. In Chapter 3, I investigated the effects of early-season infestation by the aphid Brevicoryne brassicae on the composition and dynamics of the entire insect community throughout the season in a garden experiment replicated in two consecutive years. Aphid infestation in the early season only affected a subset of the community, i.e. the natural enemies of aphids, but not the chewing herbivores and their natural enemies. Moreover, the effects were only significant in the first half (June & July), but waned in the second half of the season (August & September). The effect of aphid infestation on the community of natural enemies also varied among the cabbage populations. Chapter 4 investigated the effects of aphid infestation on plant direct defences against chewing herbivores in laboratory experiments by comparing the performance of chewing herbivores and their parasitoids on aphid-infested and aphid-free plants. The performance of the specialist herbivore Plutella xylostella and its parasitoid Diadegma semiclausum was better on plants infested with aphids than on aphid-free plants, whereas the performance of the generalist herbivore Mamestra brassicae and its parasitoid Microplitis mediator was not affected by aphid infestation. These results suggest that aphid induced changes in plant traits may differentially affect the performance of leaf-chewing herbivore species attacking the same host plant, and also varied among the cabbage populations. Chapter 5 examined the effects of B. brassicae aphid infestation on plant indirect defences against chewing herbivores. In a two-choice olfactometer bioassay, preference behaviour for volatiles emitted by plants infested with hosts alone and those emitted by plants infested with aphids and hosts was compared for D. semiclausum and M mediator, larval endoparasitoids of caterpillars of P. xylostella and M. brassicae, respectively. In addition, the headspace volatiles emitted by host-infested and dually-infested plants were collected and analyzed. Co-infestation with aphids differentially affected volatile-mediated foraging behaviour of the two parasitoid species in an infestation period-dependent manner. Diadegma semiclausum preferred dually infested plants over host-infested plants when aphids infested the plants for a short time period, i.e. 7 days, but the volatile preference of D. semiclausum was reversed when aphid infestation was extended to 14 days. In contrast, M. mediator consistently preferred volatiles emitted by the dually-infested plants over those emitted by host-infested plants. The patterns of preference behaviour of the two wasp species were consistent across the three cabbage populations. Interestingly, the emission rate of most volatile compounds was reduced in plants dually-infested with caterpillars and aphids compared to singly-infested with caterpillars. This study showed that aphid infestation increased plant indirect defences against caterpillars, but depended on the aphid infestation period and specific caterpillar-parasitoid association. We hypothesized a negative interference of aphid infestation on plant defences against chewing herbivores based on previously reported SA-JA antagonism. In Chapter 6, we assessed the activation of SA and JA signaling pathways in plants infested by both aphids (B. brassicae) and various caterpillar species (P. xylostella, M. brassicae and Pieris brassicae) in different time sequences by quantifying transcription levels of the SA- and JA-responsive marker genes, PR-1 and LOX respectively. The results did not provide support for SA-JA antagonism. Compared to single infestation with each of the herbivore species, dual infestation with aphid and caterpillars had no interactive effects on the transcription levels of the SA- and JA-responsive maker genes, regardless of the temporal sequence of aphid and caterpillar attack, or the identity of the attacking caterpillar species.

The findings of this thesis contribute to our understanding of plant responses to herbivory by insect species belonging to different feeding guilds and their ecological effects on other associated community members. Aphid infestation may interfere with plant direct and indirect defences against leaf-chewing herbivores at the individual species level, but the effects are species-specific and also depend on the infestation period of aphids. Early-season aphid infestation may further affect the composition of the insect community, but the effect is smaller influencing only a subset of the community compared to early infestation by chewing herbivores. The molecular mechanism underlying plant responses to both phloem-feeding and leaf-chewing herbivores are complex and require the investigation of a range of genes involved in JA- and SA-mediated defence signal transduction. Plant interact with multiple herbivores at different levels of biological organization ranging from the subcellular level to the individual and the community level, and an integrated multidisciplinary approach is required to investigate plant-insect interactions.

Plants under dual attack : consequences for plant chemistry and parasitoid behavior
Ponzio, C.A.M. - \ 2016
University. Promotor(en): Marcel Dicke, co-promotor(en): Rieta Gols. - Wageningen : Wageningen University - ISBN 9789462577718 - 191 p.
016-3954 - brassica nigra - insect pests - pieris brassicae - parasitoids - parasitoid wasps - cotesia glomerata - defence mechanisms - phytochemistry - herbivore induced plant volatiles - insect plant relations - animal behaviour - multitrophic interactions - plant pathogenic bacteria - xanthomonas campestris - insectenplagen - parasitoïden - sluipwespen - verdedigingsmechanismen - fytochemie - herbivoor-geinduceerde plantengeuren - insect-plant relaties - diergedrag - multitrofe interacties - plantenziekteverwekkende bacteriën

Though immobile, plants are members of complex environments, and are under constant threat from a wide range of attackers, which includes organisms such as insect herbivores or plant pathogens. Plants have developed sophisticated defenses against these attackers, and include chemical responses such as the production of and emission of volatile compounds, which can be used by natural enemies of the herbivores to locate herbivore-infested plants. While the production and use of induced volatiles by foraging natural enemies has been well studied in a single attacker/natural enemy combination, in natural situations it is common for a plant to be challenged by multiple attackers. However there is little knowledge about what happens during multiple attack, especially when one of the secondary attackers is a plant pathogen.

The aim of this thesis was to explore how dual attack modifies plant chemistry, and how changes in the emitted volatile blends then affect the behavior of foraging parasitoid, with a strong focus on the effects of non-host herbivore density and plant pathogen challenge. This study focused on the system consisting of black mustard plants (Brassica nigra), the large cabbage white butterfly, Pieris brassicae, and its larval parasitoid, Cotesia glomerata. Butterfly eggs, Brevicoryne brassicae aphids and the plant pathogen Xanthomonas campestris were used as secondary attackers. The results presented in the thesis showed that C. glomerata wasps are attracted to host-infested plants, irrespective of the presence and identity of the non-host attacker. However, when the responses of several parasitoid species to volatiles of plants infested with Pieris and/or aphids were compared, the wasp species were not equally affected and aphid infestation altered, in a density-dependent manner, the foraging behavior of all three species. In terms of volatiles, while differences in induced blends could be seen between individual attackers, these effects disappeared when plants were subjected to dual attack with caterpillars, and in the case of infestation with different aphid densities, non-linear volatile responses were revealed. Furthermore, the effects of dual attack by aphids and caterpillars were present at the level of leaf chemistry. Single and dual herbivory, as well as aphid density, led to metabolome-wide effects, driven mainly by changes in glucosinolates, sugars and antioxidant-related metabolites. The effect of pathogen challenge was further assessed by comparing the effects of virulent and avirulent pathovars, and results showed that both virulence and disease severity strongly affected the induced plant volatile blend. Remarkably, C.glomerata wasps were strongly attracted to volatiles of all the pathogen-challenged treatments, even in the absence of hosts.

The data presented in this thesis contribute to our understanding of how dual attack affects the chemistry of B. nigra plants, and modifies plant interactions with the natural enemies of attacking herbivores. This work reveals that plant pathogen challenge can affect volatile-mediated tritrophic interactions, and shows that focusing only on general species-specific effects of dual attack is too simplistic of an approach. The outcomes of this thesis contribute to our understanding of how plants modulate their defense responses against multiple attackers.

Unraveling molecular mechanisms underlying plant defense in response to dual insect attack : studying density-dependent effects
Kroes, A. - \ 2016
University. Promotor(en): Marcel Dicke; Joop van Loon. - Wageningen : Wageningen University - ISBN 9789462577756 - 265 p.
016-3953 - arabidopsis thaliana - insect pests - herbivory - pest resistance - defence mechanisms - insect plant relations - molecular plant pathology - density - insectenplagen - herbivorie - plaagresistentie - verdedigingsmechanismen - insect-plant relaties - moleculaire plantenziektekunde - dichtheid

In the field, plants suffer from attack by herbivorous insects. Plants have numerous adaptations to defend against herbivory. Not only do these defense responses reduce performance of the feeding herbivore, they also result in the attraction of natural enemies of herbivores.

The majority of studies investigating plant-insect interactions addressed mainly the effects of attack by a single herbivore species on induced plant defenses. However, because plants are members of complex communities, plants are exposed to different insect attackers at the same time. Moreover, attacks by different herbivores interact at different levels of biological organization, ranging from the level of gene expression, phytohormone production and biochemical changes up to the individual level. Effects of plant responses to feeding by two or more herbivore species simultaneously might cascade through the community and thereby affect insect community composition.

The induction of plant defense responses is regulated by a network of signaling pathways that mainly involve the phytohormones jasmonic acid (JA), salicylic acid (SA) and ethylene (ET). The signaling pathways of the two phytohormones SA and JA interact antagonistically, whereas JA and ET signaling pathways can interact both synergistically and antagonistically in regulating plant defense responses. In general, JA-mediated signaling underlies defense responses against leaf-chewing herbivores, such as caterpillars, whereas phloem-feeding insects, such as aphids, mainly induce SA-regulated defenses.

When caterpillars and aphids simultaneously feed on the same host plant, crosstalk between phytohormonal signaling pathways may affect the regulation of plant defenses. Consequently, multiple insect herbivores feeding on plants interact indirectly through plant-mediated effects. Studies investigating molecular mechanisms underlying interference by multiple attacking insects with induced plant defenses will benefit studies on the ecological consequences of induced plant responses.

The aim of this thesis was to elucidate molecular mechanisms that underlie plant-mediated interactions between attacking herbivores from different feeding guilds, namely Brevicoryne brassicae aphids and Plutella xylostella caterpillars.

Because herbivore density affects the regulation of plant defense responses, it may also influence the outcome of multiple insect-plant interactions. To study if modulation of induced plant defenses in response to dual insect attack depends on insect density, plants were infested with two densities of aphids.

Responses of Arabidopsis thaliana plants to simultaneous feeding by aphids and caterpillars were investigated by combining analyses of phytohormone levels, defense gene expression, volatile emission, insect performance and behavioral responses of parasitoids. To better predict consequences of interactions between plants and multiple insect attackers for herbivore communities, the regulation of defense responses against aphids and caterpillars was also studied in the ecological model plant wild Brassica oleracea.

Transcriptomic changes of plants during multiple insect attack and their consequences for the plant’s interactions with members of the associated insect community take place at different time scales. Direct correlation of transcriptomic responses with community development is, therefore, challenging. However, detailed knowledge of subcellular mechanisms can provide tools to address this challenge.

One of the objectives of this thesis, therefore, was to investigate the involvement of phytohormonal signaling pathways and their interactions during defense responses against caterpillars or aphids at different densities, when feeding alone or simultaneously on the model plant A. thaliana. The studies show that aphids at different densities interfere in contrasting ways with caterpillar-induced defenses, which required both SA- and JA-signal-transduction pathways. Transcriptional analysis revealed that expression of the SA transcription factor gene WRKY70 was differentially affected upon infestation by aphids at low or high densities. Interestingly, the expression data indicated that a lower expression level of WRKY70 led to significantly higher MYC2 expression through SA-JA crosstalk. Based on these findings, it is proposed that by down-regulating WRKY70 expression, the plant activates JA-dependent defenses which could lead to a higher resistance against aphids and caterpillars.

Plutella xylostella caterpillars also influenced plant defense responses when feeding simultaneously with aphids. Caterpillar feeding affected aphid-induced defenses which had negative consequences for aphid performance. Induction of both ET- and JA-mediated defense responses is required for this interference. Moreover, aphid density also played an important role in the modulation by P. xylostella of aphid-induced defenses: P. xylostella caterpillars induced changes in levels of JA and its biologically active from, JA-Ile, only when feeding simultaneously with aphids at a high density.

To study the overall effect of dual herbivory on induced plant defenses, not only interference with induced direct defense, but also with induced indirect defenses was addressed in A. thaliana. We found a significant preference of the aphid parasitoid Diaeretiella rapae for volatiles from aphid-infested A. thaliana wild-type plants and ein2-1 (ET-insensitive) mutants. Interestingly, simultaneous feeding by P. xylostella caterpillars on wild-type plants increased D. rapae’s preference for odors from aphid-infested plants. However, upon disruption of the ET-signaling pathway, D. rapae did not distinguish between ein2-1 mutants infested by aphids or by both aphids and caterpillars. This showed that intact ET signaling is needed for caterpillar modulation of the attraction of D. rapae parasitoids.

On the other hand, attraction of the caterpillar parasitoid Diadegma semiclausum to volatiles emitted by A. thaliana plants simultaneously infested by caterpillars and aphids was influenced by the density of the feeding aphids. Biosynthesis and emission of the terpene (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density, compared to dually infested plants with a low aphid density.

Transcriptomic changes in the response of A. thaliana wild-type plants to simultaneous feeding by P. xylostella caterpillars and B. brassicae aphids compared to plants infested by P. xylostella caterpillars alone were assessed using a microarray analysis. I particularly addressed the question whether the transcriptomic response to simultaneously attacking aphids and caterpillars was dependent on aphid density and time since initiation of herbivory. The data show that in response to simultaneous feeding by P. xylostella caterpillars and B. brassicae aphids the number of differentially expressed genes was higher compared to plants on which caterpillars had been feeding alone. Additionally, specific genes were differentially expressed in response to aphids feeding at low or high density. Cluster analysis showed that the pattern of gene expression over the different time points in response to dual infestation was also affected by the density of the attacking aphids. These results suggest that insects attacking at a high density cause an acceleration in plant responses compared to insects attacking at low density.

As a next step in the study of multiple interacting herbivores, I studied whether plant responses to dual herbivory have consequences for the performance of a subsequently arriving herbivore, Mamestra brassicae caterpillars. The ecological consequences of plant responses to dual herbivory cascading into a chain of interactions affecting other community members have remained unstudied so far. We used wild B. oleracea plants to evaluate dual herbivore-induced plant adaptations for subsequent herbivory. We found that simultaneous feeding by P. xylostella and B. brassicae resulted in different plant defense-related gene expression and differences in plant hormone levels compared to single herbivory, and this had a negative effect on subsequently arriving M. brassicae caterpillars. Differential induction of JA-regulated transcriptional responses to dual insect attack was observed which could have mediated a decrease in M. brassicae performance. The induction of plant defense signaling also affected both P. xylostella and B. brassicae performance. This study further helps to understand herbivore community build-up in the context of plant-mediated species interactions.

Altogether, findings from this thesis reveal a molecular basis underlying plant responses against multiple herbivory and provide insight in plant-mediated interactions between aphids and caterpillars feeding on plants growing in the field or used in agriculture.

De Kleine Bijenkastkever : Een beknopt overzicht van de huidige kennis
Cornelissen, A.C.M. - \ 2016
Wageningen : Wageningen UR, PRI bees - 29 p.
honingbijen - apidae - insectenplagen - aethina tumida - bijenziekten - honey bees - insect pests - bee diseases
De kleine bijenkastkever is een parasiet van de westerse honingbij (Apis mellifera spp.). In 2014 is deze kever aangetroffen in Zuid-Italië. Ondanks een uitvoerig uitroeiings-programma blijkt een jaar later dat de kever zich in het gebied gevestigd heeft. Het is aannemelijk dat de kever zich in de komende jaren verder over Europa zal verspreiden. De kever kan grote schade aan bijenvolken aanrichten, maar is met gerichte methodieken goed te beheersen. Dit document geeft een beknopt overzicht van de huidige kennis, over de kleine bijenkastkever
Nieuwe methoden van bestrijding van bodemplagen in de glastuinbouw en zomerbloemen
Kruidhof, H.M. ; Vijverberg, Ruben ; Woelke, J.B. ; Bloemhard, C.M.J. ; Holstein, R. van; Leman, A. - \ 2016
- 1 p.
tuinbouw - glastuinbouw - enchytraeidae - phalaenopsis - sciaridae - plecoptera - bestrijdingsmethoden - substraten - insectenplagen - zomerbloemen - sluipwespen - horticulture - greenhouse horticulture - control methods - substrates - insect pests - summer flowers - parasitoid wasps
Doel van dit onderzoek is het ontwikkelen van bestrijdingsmethoden voor Lyprauta en Proceroplatus muggenlarven (“potwormen”) en het beperken van vraatschade aan Phalaenopsis orchideeën. Hiervoor wordt eerst meer basiskennis ontwikkelt over de biologie en leefwijze van de “potwormen”, en wordt er een kweekmethode ontwikkeld. Het onderzoek richt zich tevens op het ontwikkelen van een zogenaamde “push-pull” methode voor de bestrijding van rouwmuggen (Sciaridae) en oevervliegen (Scatella sp.). Poster van het PlantgezondheidEvent 2016.
Grassnuitkevers toekomstige bedreiging voor Nederland?
Vliet, Arnold van - \ 2016
plant pests - insect pests - dispersal - sphenophorus - sphenophorus venatus - golf courses

Met de uitbreiding van grassnuitkevers in diverse landen zoals de Verenigde Staten en Spanje neemt de zorg toe dat er zich ook grassnuitkeversoorten in Nederland gaan vestigen door het verslepen van plantmateriaal of via vakantiegangers. Grassnuitkevers zijn vooral schadelijk voor gras, maar doen zich ook te goed aan mais, tarwe en varens

Ecogenomics of plant resistance to biotic and abiotic stresses
Davila Olivas, N.H. - \ 2016
University. Promotor(en): Marcel Dicke; Joop van Loon. - Wageningen : Wageningen University - ISBN 9789462576575 - 259 p.
016-3932 - arabidopsis thaliana - defence mechanisms - drought resistance - insect pests - plant pathogenic fungi - stress - stress response - transcriptomics - genomics - genetic mapping - verdedigingsmechanismen - droogteresistentie - insectenplagen - plantenziekteverwekkende schimmels - stressreactie - transcriptomica - genomica - genetische kartering
Summary

In natural and agricultural ecosystems, plants are exposed to a wide diversity of abiotic and biotic stresses such as drought, salinity, pathogens and insect herbivores. Under natural conditions, these stresses do not occur in isolation but commonly occur simultaneously. However, plants have developed sophisticated mechanisms to survive and reproduce under suboptimal conditions. Genetic screenings and molecular genetic assays have shed light on the molecular players that provide resistance to single biotic and abiotic stresses. Induced defenses are attacker specific and phytohormones play an essential role in tailoring these defense responses. Because phytohormones display antagonistic and synergistic interactions, the question emerges how plants elicit an effective defense response when exposed to conflicting signals under multiple attack. Recent studies have shed light on this issue by studying the effects of combinations of stresses at the phenotypic, transcriptomic and genetic level. These studies have concluded that the responses to combined stresses can often not be predicted based on information about responses to the single stress situations or the phytohormones involved. Thus, combined stresses are starting to be regarded as a different state of stress in the plant. Studying the effects of combinations of stresses is relevant since they are more representative of the type of stresses experienced by plants in natural conditions.

In a coordinated effort, responses of Arabidopsis thaliana to a range of abiotic and biotic stresses and stress combinations have been explored at the genetic, phenotypic, and transcriptional level. For this purpose we used an ecogenomic approach in which we integrated the assessment of phenotypic variation and Genome-Wide Association (GWA) analysis for a large number of A. thaliana accessions with an in-depth transcriptional analysis. The focus of this thesis is especially on (but not limited to) three stresses, i.e. drought, herbivory by Pieris rapae caterpillars, and infection by the necrotrophic fungal pathogen Botrytis cinerea. These stresses were chosen because the responses of A. thaliana to these three stresses are highly divergent but at the same time regulated by the plant hormones JA and/or ABA. Consequently, analysis of responses to combinatorial stresses is likely to yield information on signaling nodes that are involved in tailoring the plant’s adaptive response to combinations of these stresses. Responses of A. thaliana to other biotic and abiotic stresses are included in an integrative study (Chapter 6).

We first investigated (Chapter 2) the extent of natural variation in the response to one abiotic stress (drought), four biotic stresses (Pieris rapae caterpillars, Plutella xylostella caterpillars, Frankliniella occidentalis thrips, Myzus persicae aphids) and two combined stresses (drought plus P. rapae, and B. cinerea plus P. rapae). Using 308 A. thaliana accessions originating from Europe, the native range of the species, we focused on the eco-evolutionary context of stress responses. We analyzed how the response to stress is influenced by geographical origin, genetic relatedness and life-cycle strategy, i.e. summer versus winter annual. We identified heritable genetic variation for responses to the different stresses. We found that winter annuals are more resistant to drought, aphids and thrips and summer annuals are more resistant to P. rapae and P. xylostella caterpillars and to the combined stresses of drought followed by P. rapae and infection by the fungus B. cinerea followed by herbivory by P. rapae. Furthermore, we found differential responses to drought along a longitudinal gradient.

We further investigated, using A. thaliana accession Col-0, how phenotypic and whole-genome transcriptional responses to one stress are altered by a preceding or co-occurring stress (Chapters 3 and 4). The whole-transcriptomic profile of A. thaliana triggered by single and combined abiotic (drought) and biotic (herbivory by caterpillars of P. rapae, infection by B. cinerea) stresses was analyzed by RNA sequencing (RNA-seq). Comparative analysis of plant gene expression triggered by single and double stresses revealed a complex transcriptional reprogramming. Mathematical modelling of transcriptomic data, in combination with Gene Ontology analysis highlighted biological processes specifically affected by single and double stresses (Chapters 3). For example, ethylene (ET) biosynthetic genes were induced at 12 h by B. cinerea alone or drought followed by B. cinerea inoculation. This induction was delayed when plants were pretreated with P. rapae by inducing ET biosynthetic genes only 18 hours post inoculation. Other processes affected by combined stresses include wound response, systemic acquired resistance (SAR), water deprivation and ABA response, and camalexin biosynthesis.

In Chapter 4, we focused on the stress imposed by P. rapae herbivory alone or in combination with prior exposure to drought or infection with B. cinerea. We found that pre-exposure to drought stress or B. cinerea infection resulted in a significantly different timing of the caterpillar-induced transcriptional changes. Additionally, the combination of drought and P. rapae induced an extensive downregulation of A. thaliana genes involved in defence against pathogens. Despite the larger reduction in plant biomass observed for plants exposed to drought plus P. rapae feeding compared to P. rapae feeding alone, this did not affect weight gain of this specialist caterpillar.

In Chapter 5, we used univariate GWA to (1) understand the genetic architecture of resistance to the different stresses and (2) identify regions of the genome and possible candidate genes associated with variation in resistance to those stresses. In Chapter 5 a subset of the stresses addressed in Chapter 1 (i.e. drought, herbivory by P. rapae and P. xylostella, and the combined stresses drought plus P. rapae and B. cinerea plus P. rapae) were investigated. Results from GWA were integrated with expression data generated in Chapters 3 and 4 or available from the literature. We identified differences in genetic architecture and QTLs underlying variation in resistance to (1) P. rapae andP. xylostella and (2) resistance to P. rapae and combined stresses drought plus P. rapae and B. cinerea plus P. rapae. Furthermore, several of the QTLs identified contained genes that were differentially expressed in response to the relevant stress. For example, for P. xylostella one of the QTLs contained only two genes encoding cysteine proteases (CP1 and CP2). The expression data indicated that these genes were induced by P. rapae and P. xylostella herbivory.

In Chapter 6, the genetic architecture underlying plant resistance to 11 single stresses and some of their combinations was investigated. First, the genetic commonality underlying responses to different stresses was investigated by means of genetic correlations,, revealing that stresses that share phytohormonal signaling pathways also share part of their genetic architecture. For instance, a strong negative genetic correlation was observed between SA and JA inducers. Furthermore, multi-trait GWA identified candidate genes influencing the response to more than one stress. For example, a functional RMG1 gene seems to be associated with susceptibility to herbivory by P. rapae and osmotic stress since loss of function mutants in RMG1 displayed higher resistance to both stresses. Finally, multi-trait GWA was used to identify QTLs with contrasting and with similar effects on the response to (a) biotic or abiotic stresses and (b) belowground or aboveground stresses.

Finally, In Chapter 7, I discuss the feasibility of obtaining plants that are resistant to multiple stresses from the point of view of genetic trade-offs and experimental limitations. The ecogenomic approach for gene discovery taken in this thesis is discussed, and recommendations are especially given on the use of herbivorous insects in quantitative genetic studies of stress resistance. Furthermore, alternatives to the use of insects in quantitative genetic studies of stress resistance are discussed and proposed. Finally, I discuss the feasibility of using an ecogenomic approach to study stress responses in other plant species than the model plant of molecular genetics, A. thaliana.

A wealth of candidate genes was generated by taking an ecogenomic approach, in particular transcriptome analysis and GWA analysis. Functional characterization of these genes is a next challenge, especially in the context of multiple stress situations. These genes constitute a rich source of potential factors important for resistance to abiotic, biotic and combined stresses that in the future may be applied for crop improvement.

Mapping moves on Arabidopsis : from natural variation to single genes affecting aphid behaviour
Kloth, K.J. - \ 2016
University. Promotor(en): Marcel Dicke; Harro Bouwmeester, co-promotor(en): Maarten Jongsma. - Wageningen : Wageningen University - ISBN 9789462576483 - 269 p.
016-3933 - arabidopsis thaliana - insect pests - aphidoidea - pest resistance - genetic mapping - gene expression - quantitative traits - functional genomics - feeding behaviour - insect plant relations - insectenplagen - plaagresistentie - genetische kartering - genexpressie - kwantitatieve kenmerken - functionele genomica - voedingsgedrag - insect-plant relaties
Adaptation of the brown planthopper, Nilaparvata lugens (Sta°l), to resistant rice varieties
Ferrater, J.B. - \ 2015
University. Promotor(en): Marcel Dicke, co-promotor(en): F.G. Horgan; Peter de Jong. - Wageningen : Wageningen University - ISBN 9789462575592 - 200
insectenplagen - nilaparvata lugens - adaptatie - oryza sativa - rijst - cultivars - plaagresistentie - symbionten - gisten - endosymbionten - insect pests - adaptation - rice - pest resistance - symbionts - yeasts - endosymbionts

This thesis examines the three-way interaction between yeast-like symbionts, an insect herbivore [Nilaparvata lugens (Stål)] and its rice (Oryza sativa L.) host, during adaptation of the herbivore to resistant rice varieties. A long-term selection study (20 generations of continuous rearing, ca. 24 months) was conducted with N. lugens populations on four rice varieties (IR22, a susceptible variety and IR65482, IR62, and PTB33, three resistant varieties). Planthopper performance and the abundance of yeast-like symbionts (YLS) were monitored throughout the selection process. N. lugens populations adapted to the resistant varieties as noted by increasing body size and increased egglaying. Xylem feeding was observed as a possible behavioural adaptation of N. lugens: planthoppers on resistant plants had relatively high levels of xylem feeding compared with planthoppers on susceptible plants. Planthoppers selected on resistant varieties, had clear differences in YLS densities that were not related to fitness on the varieties and, therefore, did not support a YLS density-mediated adaptation hypothesis.

Furthermore, this study examined whether YLS density affected the capacity of planthoppers to switch between hosts on which they have been selected for several generations (natal plant) to new varieties (exposed plants) under normal YLS densities (symbiotic) and after reduction of YLS densities by heat treatment (aposymbiotic). The results suggested that YLS do not mediate host plant switching in planthoppers as removal of symbionts influenced body weight but not the relative capacity of nymphs to feed on different plants. This study also tested if virulence is acquired by shared feeding sites with virulent and avirulent planthoppers. In the study, planthoppers with varying levels of virulence affected the host plants differently: The most virulent hoppers appeared to suppress rice defences to a greater extent than non-virulent planthoppers. Planthoppers attained highest weights on those plants on which virulent planthoppers had previously fed which suggests that feeding by the virulent planthoppers facilitated subsequent planthopper feeding on the same plant. Our preliminary results indicate that feeding by mixed virulent-avirulent populations could potentially accelerate adaptation by N. lugens to resistant rice varieties.

The capacity of virulent and avirulent planthoppers to feed on a range of 24 resistant rice varieties was examined using a series of bioassays. Planthoppers were observed to feed and lay eggs on all the varieties tested, many of which have never been widely deployed in the field. Furthermore, planthoppers selected on resistant varieties often had increased fitness on other resistant varieties, even when these possess different resistance genes. However, there was no strong evidence that once planthoppers have adapted to a resistant variety, they will exhibit fitness costs on other varieties with dissimilar genes. The mechanisms underlying insect virulence are complex and further research on planthopper adaptation is necessary to help conserve genetic resources and prolong the durability of available resistant varieties.

Duurzaamheidseffecten van akkerranden
Alebeek, Frans van - \ 2015
arable farming - sustainability - biodiversity - field margins - scientific research - pilot projects - apidae - bombus - pollinators - natural enemies - insect pests - birds - ornamental value - small mammals
Markers inside wood : tree rings as archives of insect outbreaks, drift-sand dynamics, and spring flooding
Copini, P. - \ 2015
University. Promotor(en): Frits Mohren, co-promotor(en): Ute Sass-Klaassen; Jan den Ouden. - Wageningen : Wageningen University - ISBN 9789462574861 - 192
acer palmatum - quercus robur - hout - insectenplagen - jaarringen - uitbraken (ziekten) - inundatie - houtanatomie - bomen - wood - insect pests - growth rings - outbreaks - flooding - wood anatomy - trees

MARKERS INSIDE WOOD – TREE RINGS AS ARCHIVES OF INSECT OUTBREAKS, DRIFT-SAND DYNAMICS AND SPRING FLOODING

Trees are long-living organisms that record ecologically relevant information in their xylem that can be accessed by dendrochronology, the study of tree rings. Specific environmental events like frost, fire, floods, burial or wounding may drastically alter the anatomy of tree rings and consequently may leave markers inside trees. These wood-anatomical markers have shown a high potential for studying past environmental events with an annual or even intra-annual temporal resolution. In this thesis, the temporal resolution of wood-anatomical markers was studied to date wounds made by invasive Anoplophora beetles. In addition, the accuracy of dating drift-sand dynamics and spring flooding events was studied using wood-anatomical changes, which were expected to occur after drastic changes in the stem and root environment. It was hypothesised that all these wood-anatomical markers can be used with an intra-annual resolution. Field studies in combination with experiments were used to study tree growth and the formation of wood-anatomical markers in Japanese maple (Acer palmatum Thunb.) and pedunculate oak (Quercus robur L.).

It was shown that wounds in Japanese maple can be assigned to three different phases related to tree-ring development: (1) wounds that originated during dormancy are located at the tree-ring boundary; (2) wounds that originated during the growing season are located within the tree ring. If wound-xylem formation was observed locally around the wound (3), it could either imply that the wound originated at the very end of the growing season or just before the onset of radial growth or during dormancy when temperature was high. Dating wounds caused by the formation of exit holes has proved to be very significant in fighting invasive insect outbreaks. By pinpointing the exact year and season when Anoplophora beetles emerged, it can be substantiated whether exit holes in imported trees were formed at the location of import. This knowledge can subsequently be used to draw up customised eradication measures and allocate proper surveillance plans and population dynamics can be reconstructed.

Living trees in drift-sand areas may contain burial or exposure signals even if the sand under which they were buried has long since disappeared. Anatomical changes in pedunculate oak trees due to burial are not a result of physical changes in the stem environment that directly affect the cambium. Instead they are most likely the result of adventitious root formation that transforms lower parts of the stem into root, and concomitantly induces a change from stem to root anatomy. As the formation of a wood-anatomical marker caused by burial can be delayed by many years or might be entirely absent, depending on the formation of adventitious root formation, its presence only allows for an estimate on minimum burial age.

Flood rings containing anomalously small earlywood vessels in pedunculate oak are formed in response to spring flooding within a narrow time window related to cambial phenology. They can be induced if a flooding event has occurred for at least two weeks during spring. The extreme reduction in vessel size is a consequence of a delay in vessel formation due to anoxic conditions related to flooding. Flood rings however, provide only limited information on the duration of flooding, as the flooding may have lasted for months (during winter) before it is recorded.

It is concluded that the origin of wood-anatomical markers largely determines the temporal resolution. Markers induced by wounding or flooding show a high intra-annual temporal resolution and immediate effect on tree functioning, whereas burial might not be recorded three years after the triggering events. The different wood-anatomical markers addressed in this thesis illustrate the relevance of studying the mechanism behind the formation of markers for correct interpretation of the specific triggering factor as well as their temporal resolution. Only with this knowledge it becomes possible to reliably use wood-anatomical markers as archives to understand and reconstruct dynamics in geomorphic, entomologic, pathogenic or climatic factors.

Efficiëntere bemestingsstrategie mogelijke opslossing Lyprauta in potorchidee : gezonde plant toont minder schade van potworm
Rodenburg, J. ; Kruidhof, H.M. - \ 2015
Onder Glas 12 (2015)2. - p. 29 - 31.
orchidaceae - phalaenopsis - plantenplagen - potplanten - insectenplagen - effecten - bemesting - landbouwkundig onderzoek - mestgiften - glastuinbouw - plant pests - pot plants - insect pests - effects - fertilizer application - agricultural research - dressings - greenhouse horticulture
Zijn potwormen in orchidee misschien minder schadelijk dan altijd werd gedacht? Adviseur René ‘t Hoen denkt van wel. Hij claimt dat ondanks de aanwezigheid van potwormen, een gezonde plant zonder problemen kan uitgroeien tot een prima verkoopbaar product. Dit zou betekenen dat de teeltstrategie belangrijker is dan bestrijding van de schadelijke muggenlarven. Tegelijkertijd vindt hij dat zijn waarnemingen moeten worden gestaafd door onderzoek. Er is namelijk nog zeer weinig bekend over de biologie van potwormen.
Host location by hyperparasitoids: an ecogenomic approach
Zhu, F. - \ 2015
University. Promotor(en): Marcel Dicke, co-promotor(en): Erik Poelman. - Wageningen : Wageningen University - ISBN 9789462574441 - 191
insect-plant relaties - insectenplagen - herbivorie - parasitoïden - planten - verdedigingsmechanismen - symbionten - plant-herbivoor relaties - herbivoor-geinduceerde plantengeuren - hyperparasitoïden - insect plant relations - insect pests - herbivory - parasitoids - plants - defence mechanisms - symbionts - plant-herbivore interactions - herbivore induced plant volatiles - hyperparasitoids

It is fascinating that our ecological systems are structured by both direct and indirect species interactions. In terrestrial ecosystems, plants interact with many species of insects that include both harmful herbivores and beneficial natural enemies of herbivores. During the last 30 years, substantial progress has been made in different plant-insect systems regarding plant trait-mediated species interactions in a tritrophic context. However, plant-based food webs generally consist of more than three trophic levels. For example, hyperparasitoids are parasitic wasps at the fourth trophic level within the plant-associated insect community. They parasitize larvae or pupae of primary parasitoids that are broadly used in biological pest control programmes. Surprisingly, the cues that hyperparasitoids use for host location have remained largely unknown.

The studies presented in this thesis aimed to investigate the cues that are used by hyperparasitoids in host location using an ecogenomic approach that combines metabolomic, transcriptomic and proteomic tools with behavioural studies and field experiments. In addition, we addressed the role of herbivore-associated organisms in plant-mediated indirect species interactions. A naturally existing study system of the Brassica oleracea plant-based food web, including four trophic levels was used. In this system, the two herbivorous insect species, Pieris brassicae and P. rapae, are specialists on Brassica plants. The plants emit herbivore-induced plant volatiles (HIPVs) in response to Pieris caterpillar feeding damage which results in attraction of natural enemies of the herbivores, i.e. Cotesia wasps. These parasitic wasps, in turn, are attacked by hyperparasitoids, such as Lysiba nana. The results presented in this thesis show that hyperparasitoids also use HIPVs for host searching. Interestingly, they are especially attracted by plant odours induced by parasitized caterpillars. Moreover, hyperparasitoids can also use caterpillar body odours to find their hosts at close distance. These findings indicate that infochemicals are the major cues that mediate host searching behaviour of hyperparastioids. Similar to other herbivore-associated organisms, parasitoid larvae feeding inside a herbivore host can induce both behavioral and physiological changes in the host. To further investigate how parasitoid larvae indirectly affect plant responses to herbivory and plant volatile-mediated multitrophic interactions, the role of caterpillar labial salivary glands in plant-hyperparasitoid interactions were investigated. The secretions of labial saliva were eliminated by using an ablation technique. Remarkably, the results show that when the labial salivary glands of the caterpillars were completely removed, plants induced by either unparasitized or Cotesia glomerata-parasitized caterpillars were equally attractive to the hyperparasitoid. Moreover, plants became less attractive to the hyperparasitoid when damaged by ablated caterpillars compared to plants damaged by mock-treated caterpillars and the hyperparasitoids were not able to distinguish between volatiles emitted by herbivore-damaged plants and undamaged control plants when caterpillar salivary glands had been removed. These results suggest that parasitism alters the composition of labial saliva of parasitized caterpillar, which thereby alters the plant phenotype and subsequently plant-hyperparasitoid interactions. The outcomes of this thesis contribute to our understanding of the role of infochemicals in foraging decisions of hyperparasitoids.

Getting prepared for future attack : induction of plant defences by herbivore egg deposition and consequences for the insect community
Pashalidou, F.G. - \ 2015
University. Promotor(en): Marcel Dicke; Joop van Loon, co-promotor(en): Nina Fatouros. - Wageningen : Wageningen University - ISBN 9789462574120 - 168
insect-plant relaties - planten - insectenplagen - herbivorie - verdedigingsmechanismen - geïnduceerde resistentie - herbivoor-geinduceerde plantengeuren - ovipositie - natuurlijke vijanden - brassica - pieris brassicae - trofische graden - sluipwespen - hyperparasitoïden - insectengemeenschappen - insect plant relations - plants - insect pests - herbivory - defence mechanisms - induced resistance - herbivore induced plant volatiles - oviposition - natural enemies - trophic levels - parasitoid wasps - hyperparasitoids - insect communities

Plants have evolved intriguing defences against insect herbivores. Compared to constitutive Plants have evolved intriguing defences against insect herbivores. Compared to constitutive defences that are always present, plants can respond with inducible defences when they are attacked. Insect herbivores can induce phenotypic changes in plants and consequently these changes may differentially affect subsequent attackers and their associated insect communities. Many studies consider herbivore-feeding damage as the first interaction between plants and insects. The originality of this study was to start with the first phase of herbivore attack, egg deposition, to understand the consequences of plant responses to eggs on subsequently feeding caterpillars and their natural enemies. The main plant species used for most of the experiments was Brassica nigra (black mustard), which occurs naturally in The Netherlands. The main herbivore used was the lepidopteran Pieris brassicae, which lays eggs in clusters and feeds on plants belonging to the Brassicaceae family. This study investigated plant-mediated responses to oviposition and their effects on different developmental stages of the herbivore, such as larvae and pupae. Furthermore, the effects of oviposition were extended to four more plant species of the same family, and to higher trophic levels including parasitoids and hyperparasitoids. The experiments were conducted under laboratory, semi-field and field conditions. This study shows that B. nigra plants recognize the eggs of P. brassicae and initiate resistance against subsequent developmental stages of the herbivore. Interestingly, plant responses to oviposition were found to be species specific. Plants did not respond to egg deposition by another herbivore species, the generalist moth Mamestra brassicae. Moreover, most of the Brassicaceae species tested were found to respond to P. brassicae eggs, which indicates that plant responses against oviposition are more common among the family of Brassicaceae. To assess effects on other members of the food chain, the effects of oviposition on plant volatile emission and the attraction of parasitic wasps, such as the larval parasitoid Cotesia glomerata, were tested. It was shown that the wasps were able to use the blend of plant volatiles, altered by their hosts’ oviposition, to locate young caterpillars just after hatching from eggs. The observed behaviour of the wasps was associated with higher parasitism success and higher fitness in young hosts. Similar results were obtained in a field experiment, where plants infested with eggs and caterpillars attracted more larval parasitoids and hyperparasitoids and eventually produced more seeds compared to plants infested with caterpillars only. This study shows that an annual weed like B. nigra uses egg deposition as reliable information for upcoming herbivory and responds accordingly with induced defences. Egg deposition could influence plant-associated community members at different levels in the food chain and benefit seed production. As the importance of oviposition on plant-herbivore interactions is only recently discovered, more research is needed to elucidate the mechanisms that underlie such plant responses and how these interactions affect the structure of insect communities in nature.

Hoe zorgen zombierupsen voor een beter milieu?
Vet, L.E.M. - \ 2015
Universiteit van Nederland
biodiversiteit - ecosystemen - sluipwespen - rupsen - plagenbestrijding - insectenplagen - organismen ingezet bij biologische bestrijding - milieubeheersing - gewasbescherming - verdedigingsmechanismen - biodiversity - ecosystems - parasitoid wasps - caterpillars - pest control - insect pests - biological control agents - environmental control - plant protection - defence mechanisms
Filmpje van de Universiteit van Nederland: Hoe zorgen zombierupsen voor een beter milieu? Als je verschillende soorten organismen in een ecosysteem hebt, houden ze elkaar in balans. Daarom is biodiversiteit goed voor het milieu. Dit is ook waarom insectenplagen soms erger kunnen worden door het gebruik van pesticiden. Prof. dr. Louise Vet van Wageningen UR onderzoekt daarom hoe zombierupsen plagen kunnen bestrijden.
Check title to add to marked list
<< previous | next >>

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.