Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==palaeoptera
Check title to add to marked list
Data from: Reanalyzing the Palaeoptera problem - the origin of insect flight remains obscure
Simon, S. ; Blanke, Alexander ; Meusemann, Karen - \ 2018
transcriptomics - phylogenomics - homologization - odonata - ephemeroptera - neoptera - palaeoptera - chiastomyaria - metapterygota
The phylogenetic relationships of the winged insect lineages – mayflies (Ephemeroptera), damselflies and dragonflies (Odonata), and all other winged insects (Neoptera) – are still controversial with three hypotheses supported by different datasets: Palaeoptera, Metapterygota and Chiastomyaria. Here, we reanalyze available phylogenomic data with a focus on detecting confounding and alternative signal. In this context, we provide a framework to quantitatively evaluate and assess incongruent molecular phylogenetic signal inherent in phylogenomic datasets. Despite overall support for the Palaeoptera hypothesis, we also found considerable signal for Chiastomyaria, which is not easily detectable by standardized tree inference approaches. Analyses of the accumulation of signal across gene partitions showed that signal accumulates gradually. However, even in case signal only slightly supported one over the other hypothesis, topologies inferred from large datasets switch from statistically strongly supported Palaeoptera to strongly supported Chiastomyaria. From a morphological point of view, Palaeoptera currently appears to be the best-supported hypothesis; however, recent analyses were restricted to head characters. Phylogenetic approaches covering all organ systems including analyses of potential functional or developmental convergence are still pending so that the Palaeoptera problem has to be considered an open question in insect systematics.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.