Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Current refinement(s):

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: keywords==representativeness
Check title to add to marked list
Representation and inclusion in SCAR : Task 1.1 Analysis of the key factors of involvement and representativeness
Boekhorst, Dorri te - \ 2017
H2020 CSA CASA - 61 p.
SCAR - CASA - representation - Inclusion - representativeness - Bioeconomy - Research agenda - European Research Area - Common agricultural
Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
Papale, Dario ; Black, T.A. ; Carvalhais, Nuno ; Cescatti, Alessandro ; Chen, Jiquan ; Jung, Martin ; Kiely, Gerard ; Lasslop, Gitta ; Mahecha, Miguel D. ; Margolis, Hank ; Merbold, Lutz ; Montagnani, Leonardo ; Moors, Eddy ; Olesen, J.E. ; Reichstein, Markus ; Tramontana, Gianluca ; Gorsel, Eva Van; Wohlfahrt, Georg ; Ráduly, Botond - \ 2015
Journal of Geophysical Research: Biogeosciences 120 (2015)10. - ISSN 2169-8953 - p. 1941 - 1957.
artificial neural networks - gross primary production - latent heat - representativeness - uncertainty - upscaling

Empirical modeling approaches are frequently used to upscale local eddy covariance observations of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models largely depends on the data used for parameterization and identification of input-output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion of uncertainties in extrapolation due to sample selection. ANNs were found to be a useful tool for GPP and LE prediction, in particular for extrapolation in time (mean absolute error MAE for GPP between 0.53 and 1.56 gC m-2 d-1). Extrapolation in space in similar climatic and vegetation conditions also gave good results (GPP MAE 0.7-1.41 gC m-2 d-1), while extrapolation in areas with different seasonal cycles and controlling factors (e.g., the tropical regions) showed noticeably higher errors (GPP MAE 0.8-2.09 gC m-2 d-1). The distribution and the number of sites used for ANN training had a remarkable effect on prediction uncertainty in both, regional GPP and LE budgets and their interannual variability. Results obtained show that for ANN upscaling for continents with relatively small networks of sites, the error due to the sampling can be large and needs to be considered and quantified. The analysis of the spatial variability of the uncertainty helped to identify the meteorological drivers driving the uncertainty. Key Points Uncertainty due to spatial sampling is evaluated using ANNs and FLUXNET data GPP and LE budgets and IAV are analyzed with different site networks The uncertainty in upscaling due to spatial sampling is highly heterogeneous

Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.