Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 20 / 212

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Bai
Check title to add to marked list
Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China
Zhao, Zhanqing ; Qin, Wei ; Bai, Zhaohai ; Ma, Lin - \ 2019
Agricultural Water Management 212 (2019). - ISSN 0378-3774 - p. 262 - 272.
Crop-livestock system - Haihe Basin - Nitrogen - NUFER - Phosphorus - Water pollution

Agricultural nitrogen (N) and phosphorus (P) emissions to water bodies remain largely unknown in China, mainly due to the lack of reliable data sources and quantification tools. In this study, we constructed a grid-based NUFER (NUtrient Flow in food chains, Environment and Resources use) model in order to quantify a high-resolution agricultural N and P emissions to water bodies in Haihe Basin in 2012, based on data collected from county-level statistics, farm interview, and spatial data of topography, climate, soil texture, and land use. We also explored the mitigation strategies in 2030 via scenario analysis. The results showed that total agricultural N emission to water bodies in Haihe Basin was 1079 Gg N in 2012, of which cropland contributed 54%; total agricultural P emission to water bodies was 208 Gg P, livestock contributed 78%. There were large spatial variations in agricultural N and P emissions. Overall, the plain areas accounted for around 80% of the total agricultural N and P emissions to water in 2012. The highest N and P emission intensities were 10 t N km−2 and 2 t P km−2, respectively. N and P emissions were significantly related to anthropogenic factors (such as the livestock density and cropland) in the plain areas; whereas in mountainous areas, both anthropogenic and natural factors (e.g., slope deviation and soil texture) significantly affected N and P emissions. Our scenario analysis suggests that agricultural N and P emissions can be reduced by up to 45% and 77%, respectively for N and P in 2030, via improved agricultural and environmental policies, technologies and managements. The prohibition of direct animal manure discharge to the water system seems to be the most effective measure to mitigate the emissions. Our study provided a high-resolution agricultural N and P emissions to the water bodies of Haihe Basin and identified the most effective options to reduce these emissions in highly intensified agricultural areas.

Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate
Zhang, Zhe ; Zhang, Yanqing ; Sun, Zhanxiang ; Zheng, Jiaming ; Liu, Enke ; Feng, Liangshan ; Feng, Chen ; Si, Pengfei ; Bai, Wei ; Cai, Qian ; Yang, Ning ; Werf, Wopke van der; Zhang, Lizhen - \ 2019
Agricultural Water Management 212 (2019). - ISSN 0378-3774 - p. 203 - 210.
Film cover - Soil temperature - Water availability - Yield components

Plastic film mulch increases crop yields in rain-fed agriculture in cool semi-arid climates by warming the soil and reducing evaporative water losses. The semi-arid Khorchin area in Northeast China is an important production area for rain-fed maize. Drought stress occurs frequently, even if plastic film mulch is applied at sowing. We hypothesized that the yield and water capture of maize could be increased by reducing evaporative loss of water by use of plastic film cover during the autumn and winter preceding sowing. In this study, we compared maize growth, water uptake and yield in three film cover treatments: (1) film cover from the autumn before maize sowing until maize harvest (autumn mulching: AM), (2) film cover from maize sowing till harvest (conventional practice) (spring mulching: SM), (3) no film cover (no mulch: NM). Field experiments were conducted in Fuxin city, Khorchin region, Liaoning province, China in 2013/2014 and 2014/2015. Autumn mulching increased grain yield on average by 18% when compared to spring mulching and by 36% when compared to no mulching. The 1000-kernel weight in AM was 7% higher than in SM, and 12% higher than in NM. Soil water content in the root zone before sowing was 35 mm greater in AM than in SM and NM. Water uptake during the growing season was 34 mm greater in AM than in SM and NM. Water use efficiency for grain yield (yield per unit water uptake) in AM was on average 2.5% higher than in conventional mulching (SM) and 27% higher than in NM. Autumn mulching advanced development, with an advance of 5 days in tasseling time as compared to SM and 10 days when compared to NM. These results show that film cover during the fallow period before maize sowing can increase crop yield and water use efficiency, and reduce climate risks in rain-fed agriculture under semi-arid conditions.

Nutrient use efficiencies, losses, and abatement strategies for peri-urban dairy production systems
Wei, S. ; Bai, Z.H. ; Qin, W. ; Wu, Z.G. ; Jiang, R.F. ; Ma, L. - \ 2018
Journal of Environmental Management 228 (2018). - ISSN 0301-4797 - p. 232 - 238.
Dairy farms - Manure management - Nitrogen - NUFER model - Nutrient cycling - Phosphorus

Manure management is an important aspect of urban livestock production that has a profound impact on metropolitan living. Data were collected from 28 dairy farms in peri-urban Beijing and analysed to determine farm nitrogen and phosphorus flows and costs associated with various manure management options to reduce nutrient losses. Dairy production in peri-urban Beijing was characterized by its use of high protein diets (16.3–17.0% crude protein), high reliance on imported feeds (92–98%), and low manure recycling (3.0–10.8%). Farms of 900–2000 cattle showed lower use efficiencies than farms of <900 cattle. Costs of manure handling ranged from 0.1 to 1.0 Yuan kg−1 milk. Among various manure treatment options, biogas digesters with aerobic lagoons had the lowest N losses and costs, justifying their investments. In conclusion, peri-urban dairy production systems were contrasting with traditional systems and within their own systems in nutrient use efficiency and losses, which was mainly decided by their farm size. To improve the nutrient use efficiencies and reduce losses, farmers and managers of peri-urban dairy production system should have a full awareness of different feed intake and manure management.

Resistance to tomato yellow leaf curl virus in tomato germplasm
Yan, Zhe ; Pérez-de-Castro, Ana ; Díez, Maria J. ; Hutton, Samuel F. ; Visser, Richard G.F. ; Wolters, Anne-Marie A. ; Bai, Yuling ; Li, Junming - \ 2018
Frontiers in Plant Science 9 (2018). - ISSN 1664-462X
Begomovirus - Resistance - S. chilense - S. peruvianum - Solanum lycopersicum - Tomato - TYLCV

Tomato yellow leaf curl virus (TYLCV) is a virus species causing epidemics in tomato (Solanum lycopersicum) worldwide. Many efforts have been focused on identification of resistance sources by screening wild tomato species. In many cases, the accession numbers were either not provided in publications or not provided in a consistent manner, which led to redundant screenings. In the current study, we summarized efforts on the screenings of wild tomato species for TYLCV resistance from various publications. In addition, we screened 708 accessions from 13 wild tomato species using different inoculation assays (i.e., whitefly natural infection and Agrobacterium-mediated inoculation) from which 138 accessions exhibited no tomato yellow leaf curl disease (TYLCD) symptoms. These symptomless accessions include 14 accessions from S. arcanum, 43 from S. chilense, 1 from S. chmielewskii, 28 from S. corneliomulleri, 5 from S. habrochaites, 4 from S. huaylasense, 2 from S. neorickii, 1 from S. pennellii, 39 from S. peruvianum, and 1 from S. pimpinellifolium. Most of the screened S. chilense accessions remained symptomless. Many symptomless accessions were also identified in S. arcanum, S. corneliomulleri, and S. peruvianum. A large number of S. pimpinellifolium accessions were screened. However, almost all of the tested accessions showed TYLCD symptoms. Further, we studied allelic variation of the Ty-1/Ty-3 gene in few S. chilense accessions by applying virus-induced gene silencing and allele mining, leading to identification of a number of allele-specific polymorphisms. Taken together, we present a comprehensive overview on TYLCV resistance and susceptibility in wild tomato germplasm, and demonstrate how to study allelic variants of the cloned Ty-genes in TYLCV-resistant accessions.

Tomato disease resistances in the post-genomics era
Bai, Yuling ; Yan, Zhe ; Moriones, E. ; Fernández-Muñoz, R. - \ 2018
In: Proceedings of the 5th International Symposium on Tomato Diseases. - International Society for Horticultural Science (Acta Horticulturae ) - ISBN 9789462612037 - p. 1 - 17.
CRISPR/CAS9 - Effector target - Effector-assisted R gene identification - Gene editing - Mutagenesis - Recessive resistance - Resilience to combined stresses - TILLING

Disease in tomato (Solanum lycopersicum) can be caused by many pathogenic organisms, including cellular pathogens (e.g., fungi, bacteria, phytoplasmas, oomycetes and nematodes) and non-cellular pathogens (e.g., viruses and viroids). To respond to pathogen attack, tomato plants, like other sessile organisms, have developed an immune system, where pathogen effectors and plant receptor proteins (e.g., resistance proteins) play a central role. With advances in the genomics era, our understanding of plant-pathogen interactions is evolving rapidly. For example, pathogen genomics has allowed a genome-wide study on the structure, function and evolution of effectors in pathogen genomes. So-called effectoromics offers a high-throughput functional approach to study effector-associated plant genes such as resistance (R) genes and susceptibility (S) genes. In tomato, “genome to germplasms” is facilitating a genome dimension to the exploration of plant diversity in resistance by sequencing and re-sequencing of genomes of available germplasm resources. Together with this breakthrough and powerful techniques for genome editing, novel strategies are being developed for breeding tomatoes with durable resistance to pathogens. Using examples of several tomato diseases, this review focuses on (1) layers of plant immune system, (2) the exploitation of plant S genes in resistance breeding, (3) rapid identification of R and S genes, and (4) novel routes for durable resistance to pathogens. Finally, the topic of breeding for resilience to combined biotic and abiotic stresses is discussed based on our results, which show extensive crosstalk between loci/pathways for resistance to pathogens and tolerance to abiotic stresses.

Designing Vulnerable Zones of Nitrogen and Phosphorus Transfers to Control Water Pollution in China
Bai, Zhaohai ; Lu, Jie ; Zhao, Hao ; Velthof, Gerard L. ; Oenema, Oene ; Chadwick, Dave ; Williams, John R. ; Jin, Shuqin ; Liu, Hongbin ; Wang, Mengru ; Strokal, Maryna ; Kroeze, Carolien ; Hu, Chunsheng ; Ma, Lin - \ 2018
Environmental Science and Technology 52 (2018)16. - ISSN 0013-936X - p. 8987 - 8988.
China’s livestock transition : Driving forces, impacts, and consequences
Bai, Zhaohai ; Ma, Wenqi ; Ma, Lin ; Velthof, Gerard L. ; Wei, Zhibiao ; Havlík, Petr ; Oenema, Oene ; Lee, Michael R.F. ; Zhang, Fusuo - \ 2018
Science Advances 4 (2018)7. - ISSN 2375-2548

China’s livestock industry has experienced a vast transition during the last three decades, with profound effects on domestic and global food provision, resource use, nitrogen and phosphorus losses, and greenhouse gas (GHG) emissions. We provide a comprehensive analysis of the driving forces around this transition and its national and global consequences. The number of livestock units (LUs) tripled in China in less than 30 years, mainly through the growth of landless industrial livestock production systems and the increase in monogastric livestock (from 62 to 74% of total LUs). Changes were fueled through increases in demand as well as, supply of new breeds, new technology, and government support. Production of animal source protein increased 4.9 times, nitrogen use efficiency at herd level tripled, and average feed use and GHG emissions per gram protein produced decreased by a factor of 2 between 1980 and 2010. In the same period, animal feed imports have increased 49 times, total ammonia and GHG emissions to the atmosphere doubled, and nitrogen losses to watercourses tripled. As a consequence, China’s livestock transition has significant global impact. Forecasts for 2050, using the Shared Socio-economic Pathways scenarios, indicate major further changes in livestock production and impacts. On the basis of these possible trajectories, we suggest an alternative transition, which should be implemented by government, processing industries, consumers, and retailers. This new transition is targeted to increase production efficiency and environmental performance at system level, with coupling of crop-livestock production, whole chain manure management, and spatial planning as major components.

The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses
Bai, Yuling ; Sunarti, Sri ; Kissoudis, Christos ; Visser, Richard G.F. ; Linden, C.G. van der - \ 2018
Frontiers in Plant Science 9 (2018). - ISSN 1664-462X
Abiotic stress - Biotic stress - Combined stresses - Disease resistance - Effector-triggered immunity (ETI) - PAMP-triggered immunity (PTI)

In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

Effects of agricultural management practices on soil quality : A review of long-term experiments for Europe and China
Bai, Zhanguo ; Caspari, Thomas ; Gonzalez, Maria Ruiperez ; Batjes, Niels H. ; Mäder, Paul ; Bünemann, Else K. ; Goede, Ron de; Brussaard, Lijbert ; Xu, Minggang ; Ferreira, Carla Sofia Santos ; Reintam, Endla ; Fan, Hongzhu ; Mihelič, Rok ; Glavan, Matjaž ; Tóth, Zoltán - \ 2018
Agriculture, Ecosystems and Environment 265 (2018). - ISSN 0167-8809 - p. 1 - 7.
Agricultural management practices - Literature review - Long-term field experiments - Response ratio - Soil quality indicators
In this paper we present effects of four paired agricultural management practices (organic matter (OM) addition versus no organic matter input, no-tillage (NT) versus conventional tillage, crop rotation versus monoculture, and organic agriculture versus conventional agriculture) on five key soil quality indicators, i.e., soil organic matter (SOM) content, pH, aggregate stability, earthworms (numbers) and crop yield. We have considered organic matter addition, no-tillage, crop rotation and organic agriculture as “promising practices”; no organic matter input, conventional tillage, monoculture and conventional farming were taken as the respective references or “standard practice” (baseline). Relative effects were analysed through indicator response ratio (RR) under each paired practice. For this we considered data of 30 long-term experiments collected from 13 case study sites in Europe and China as collated in the framework of the EU-China funded iSQAPER project. These were complemented with data from 42 long-term experiments across China and 402 observations of long-term trials published in the literature. Out of these, we only considered experiments covering at least five years. The results show that OM addition favourably affected all the indicators under consideration. The most favourable effect was reported on earthworm numbers, followed by yield, SOM content and soil aggregate stability. For pH, effects depended on soil type; OM input favourably affected the pH of acidic soils, whereas no clear trend was observed under NT. NT generally led to increased aggregate stability and greater SOM content in upper soil horizons. However, the magnitude of the relative effects varied, e.g. with soil texture. No-tillage practices enhanced earthworm populations, but not where herbicides or pesticides were applied to combat weeds and pests. Overall, in this review, yield slightly decreased under NT. Crop rotation had a positive effect on SOM content and yield; rotation with ley very positively influenced earthworms’ numbers. Overall, crop rotation had little impact on soil pH and aggregate stability − depending on the type of intercrop; alternatively, rotation of arable crops only resulted in adverse effects. A clear positive trend was observed for earthworm abundance under organic agriculture. Further, organic agriculture generally resulted in increased aggregate stability and greater SOM content. Overall, no clear trend was found for pH; a decrease in yield was observed under organic agriculture in this review.
New geographical insights of the latest expansion of fusarium oxysporum f.Sp. Cubense tropical race 4 into the greater mekong subregion
Zheng, Si Jun ; García-Bastidas, Fernando A. ; Li, Xundong ; Zeng, Li ; Bai, Tingting ; Xu, Shengtao ; Yin, Kesuo ; Li, Hongxiang ; Fu, Gang ; Yu, Yanchun ; Yang, Liu ; Nguyen, Huy Chung ; Douangboupha, Bounneuang ; Khaing, Aye Aye ; Drenth, Andre ; Seidl, Michael F. ; Meijer, Harold J.G. ; Kema, Gert H.J. - \ 2018
Frontiers in Plant Science 9 (2018). - ISSN 1664-462X
China - Fusarium wilt - Laos - Myanmar - Phytogeography - Single nucleotide polymorphism (SNP) - The Greater Mekong Subregion (GMS) - Vietnam
Banana is the most popular and most exported fruit and also a major food crop for millions of people around the world. Despite its importance and the presence of serious disease threats, research into this crop is limited. One of those is Panama disease or Fusarium wilt. In the previous century Fusarium wilt wiped out the “Gros Michel” based banana industry in Central America. The epidemic was eventually quenched by planting “Cavendish” bananas. However, 50 years ago the disease recurred, but now on “Cavendish” bananas. Since then the disease has spread across South-East Asia, to the Middle-East and the Indian subcontinent and leaped into Africa. Here, we report the presence of Fusariumoxysporumf.sp. cubense Tropical Race 4 (Foc TR4) in “Cavendish” plantations in Laos, Myanmar, and Vietnam. A combination of classical morphology, DNA sequencing, and phenotyping assays revealed a very close relationship between the Foc TR4 strains in the entire Greater Mekong Subregion (GMS), which is increasingly prone to intensive banana production. Analyses of single-nucleotide polymorphisms enabled us to initiate a phylogeography of Foc TR4 across three geographical areas—GMS, Indian subcontinent, and the Middle East revealing three distinct Foc TR4 sub-lineages. Collectively, our data place these new incursions in a broader agroecological context and underscore the need for awareness campaigns and the implementation of validated quarantine measures to prevent further international dissemination of Foc TR4.
Greenhouse gas and ammonia emissions and mitigation options from livestock production in peri-urban agriculture : Beijing – A case study
Wei, S. ; Bai, Z.H. ; Chadwick, D. ; Hou, Y. ; Qin, W. ; Zhao, Z.Q. ; Jiang, R.F. ; Ma, L. - \ 2018
Journal of Cleaner Production 178 (2018). - ISSN 0959-6526 - p. 515 - 525.
Climate change - Manure management - Mitigation option - Temporal and spatial variation - Urban livestock production
Livestock production in peri-urban areas constitutes an important sub-sector of the agricultural production system in China, and contributes to environmental degradation and local air borne pollution contributing to smog. As a result, local policies are being implemented to safeguard the environment. However, there has been little attempt to quantify the impact of environmental policies on livestock production structure, spatial distribution and their related greenhouse gases (GHGs) and ammonia (NH3) emissions. Here, we calculated the inventories of GHGs and NH3 emissions for 2010 and 2014 for peri-urban livestock production in Beijing, using reliable spatially explicit data, which was collected from 1748 industrial farms in 2010 and 2351 industrial farms in 2014, including pig, dairy, beef cattle, poultry and sheep farms. Our estimates indicated that total industrial livestock production increased by 17% between 2010 and 2014, even under the more strict environmental protection polices, with farm size decreasing by between 7% and 47%. Up to 50% of the industrial livestock farms have remained in operation, with the rest closing down or being moved to other regions. Following this trend, total GHGs emission decreased from 5.0 to 4.5 Tg CO2-eq between 2010 and 2014. Most of the GHGs emission reduction was due to the lowering of energy related carbon dioxide (CO2) emission in 2014. Total NH3 emission decreased from 102 to 96 Gg between 2010 and 2014, mainly due to more stringent environmental regulations for new and extended farms (increased in farm size), e.g. Discharge standard for pollutants for livestock and poultry breeding. Our study identified that GHGs and NH3 emission hotspots were concentrated in suburban areas (around the city centre and with less agricultural resource and population density) in 2010. However, between 2010 and 2014 these hotspots moved to the exurban plain and mountain area following the closure or sub-division of intensive farms in suburban regions and construction of new and small farms in exurban areas (around the suburban and with more agricultural resource and lower population density). Scenario analysis suggests that total GHGs emission can be reduced by up to 1.0 Tg CO2-eq (23% of total livestock sector emissions) in Beijing, using a combination of modifications of farm type, livestock diet and manure management. The integrated scenario can reduce CH4, N2O and NH3 emissions by 27%, 9% and 35%, compared to the reference scenario. Within this short period of time (5 years), policies have had direct impacts on peri-urban livestock production in Beijing, resulting in marked changes in the structure of different livestock sectors, as well as the GHGs and NH3 emission inventories and their spatial distribution. Our analysis clearly shows that the success of these (and future) polices relies on optimizing spatial management of new livestock production systems. Policy and farmer guidance should focus on optimizing livestock diet and on-farm manure management, industrial production systems and the pig and poultry sectors in peri-urban regions.
Global environmental costs of China's thirst for milk
Bai, Zhaohai ; Lee, Michael R.F. ; Ma, Lin ; Ledgard, Stewart ; Velthof, Gerard L. ; Ma, Wenqi ; Guo, Mengchu ; Zhao, Zhanqing ; Wei, Sha ; Li, Shengli ; Liu, Xia ; Havlík, Petr ; Luo, Jiafa ; Hu, Chunsheng ; Zhang, Fusuo - \ 2018
Global Change Biology 24 (2018)5. - ISSN 1354-1013 - p. 2198 - 2211.
Cattle feed - Greenhouse gas - Land use, nitrogen losses - Milk trade - Shared socio-economic pathways scenarios
China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO 2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO 2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively.
Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate
Zhang, Dongsheng ; Du, Guijuan ; Sun, Zhanxiang ; Bai, Wei ; Wang, Qi ; Feng, Liangshan ; Zheng, Jiaming ; Zhang, Zhe ; Liu, Yang ; Yang, Shu ; Yang, Ning ; Feng, Chen ; Cai, Qian ; Evers, Jochem B. ; Werf, Wopke van der; Zhang, Lizhen - \ 2018
European Journal of Agronomy 94 (2018). - ISSN 1161-0301 - p. 1 - 11.
Border row effect - Leaf photosynthesis - Millet - Peanut - Sweet potato
Agroforestry systems, which combine annual crops with trees, are used widely in semi-arid regions to reduce wind erosion and improve resource (e.g. water) use efficiency. Limited knowledge is available on optimizing such systems by the choice of crop species with specific physiological traits (i.e. C3 vs C4, N-fixing vs non-N-fixing). In this study we quantified the light interception and utilization efficiency of trees and crops in agroforestry systems comprising apricot trees and a C3 species (sweet potato), a C4 species (millet) or an N-fixing legume species (peanut), and used measurements in the sole stands as a reference. A significant delay in leaf growth was found in millet. Maximum LAI of millet was 17% higher in agroforestry then expected from sole crop LAI, taking into account the relative density of 2/3, while a 25% decrease in maximum LAI compared to expected was observed in peanut and sweet potato. The total light interception in agroforestry was 54% higher than in sole tree stands and 23% higher than in sole crops. The millet intercepted more light and produced more biomass in agroforestry than peanut and sweet potato. The LUE values of the crops in the mixed systems were higher than those of the sole crops, as was the photosynthetic efficiency of individual leaves, especially in plants in the border rows of the crop strips. High light capture in agroforestry made a greater contribution to productivity of understory crops than the increases in light use efficiency. We conclude that agroforestry systems with apricot trees and annual crops, especially millet, can improve light utilization in semi-arid climates and contribute to regional sustainability and adaptation to climate change.
Plant behaviour under combined stress : tomato responses to combined salinity and pathogen stress
Bai, Yuling ; Kissoudis, Christos ; Yan, Zhe ; Visser, Richard G.F. ; Linden, Gerard van der - \ 2018
The Plant Journal 93 (2018)4. - ISSN 0960-7412 - p. 781 - 793.
combined biotic and abiotic stresses - plant disease - resistance gene - salinity stress - stress interaction - stress tolerance
Crop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress. There is evidence that plant resistance to pathogens can be attenuated or enhanced by abiotic stress factors. With stress tolerance research being mostly focused on plant responses to individual stresses, the understanding of a plant's ability to adapt to combined stresses is limited. In the last few years, we studied powdery mildew resistance under salt stress conditions in the model crop plant tomato with the aim to understand the requirements to achieve plant resilience to a wider array of combined abiotic and biotic stress combinations. We uncovered specific responses of tomato plants to combined salinity-pathogen stress, which varied with salinity intensity and plant resistance genes. Moreover, hormones, with their complex regulation and cross-talk, were shown to play a key role in the adaptation of tomato plants to the combined stress. In this review, we attempt to understand the complexity of plant responses to abiotic and biotic stress combinations, with a focus on tomato responses (genetic control and cross-talk of signaling pathways) to combined salinity and pathogen stresses. Further, we provide recommendations on how to design novel strategies for breeding crops with a sustained performance under diverse environmental conditions.
Soil Quality - a critical review
Bunemann, Else K. ; Bongiorno, G. ; Bai, Z.G. ; Creamer, Rachel ; Deyn, G.B. de; Goede, R.G.M. de; Fleskens, L. ; Geissen, V. ; Kuijper, T.W.M. ; Mäder, Paul ; Pulleman, M.M. ; Sukkel, W. ; Groenigen, J.W. van; Brussaard, L. - \ 2018
Soil Biology and Biochemistry 120 (2018). - ISSN 0038-0717 - p. 105 - 125.
Sampling and analysis or visual examination of soil to assess its status and use potential is widely practiced from plot to national scales. However, the choice of relevant soil attributes and interpretation of measurements are not straightforward, because of the complexity and site-specificity of soils, legacy effects of previous land use, and trade-offs between ecosystem services. Here we review soil quality and related concepts, in terms of definition, assessment approaches, and indicator selection and interpretation. We identify the most frequently used soil quality indicators under agricultural land use. We find that explicit evaluation of soil quality with respect to specific soil threats, soil functions and ecosystem services has rarely been implemented, and few approaches provide clear interpretation schemes of measured indicator values. This limits their adoption by land managers as well as policy. We also consider novel indicators that address currently neglected though important soil properties and processes, and we list the crucial steps in the development of a soil quality assessment procedure that is scientifically sound and supports management and policy decisions that account for the multi-functionality of soil. This requires the involvement of the pertinent actors, stakeholders and end-users to a much larger degree than practiced to date.
Identify stakeholders' understandings of life cycle assessment results on wastewater related issues
Bai, Shunwen ; Zhu, Xueqin ; Wang, Xiuheng ; Ren, Nanqi - \ 2018
Science of the Total Environment 622-623 (2018). - ISSN 0048-9697 - p. 869 - 874.
Conjoint analysis - Life cycle assessment - Stakeholders' preferences - Waste management
To facilitate decision-making processes in waste management, it is important to not only evaluate environmental impacts, but also to measure how stakeholders form opinions and make choices based one valuation results. Life cycle assessments (LCAs) have been widely used to evaluate environmental impacts; however, LCAs cannot be used to measure how people make judgments based on evaluation results. As such, in this study, we combined LCA with conjoint analysis, an economic method that allows individuals to consider all factors and demonstrate their preferences simultaneously. We used this combined method in a case study on wastewater treatment, and obtained two major types of estimation results: (1) the relative importance of each impact category of LCA, and (2) the overall preferences of respondents for each alternative. This study also highlighted some issues regarding the combination of methodologies, such as the selection of impact categories in LCA, the conversion of impact categories into understandable attributes for conjoint analysis, and weaknesses in conjoint analysis that need to be addressed and corrected in future studies.
Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy
Bai, Bing ; Novák, Ondřej ; Ljung, Karin ; Hanson, Johannes ; Bentsink, Leónie - \ 2018
New Phytologist 217 (2018)3. - ISSN 0028-646X - p. 1077 - 1085.
The importance of translational regulation during Arabidopsis seed germination has been shown previously. Here the role of transcriptional and translational regulation during seed imbibition of the very dormant DELAY OF GERMINATION 1 (DOG1) near-isogenic line was investigated. Polysome profiling was performed on dormant and after-ripened seeds imbibed for 6 and 24 h in water and in the transcription inhibitor cordycepin. Transcriptome and translatome changes were investigated. Ribosomal profiles of after-ripened seeds imbibed in cordycepin mimic those of dormant seeds. The polysome occupancy of mRNA species is not affected by germination inhibition, either as a result of seed dormancy or as a result of cordycepin treatment, indicating the importance of the regulation of transcript abundance. The expression of auxin metabolism genes is discriminative during the imbibition of after-ripened and dormant seeds, which is confirmed by altered concentrations of indole-3-acetic acid conjugates and precursors.
Trichomes: interaction sites of tomato leaves with biotrophic powdery mildew pathogens
Suzuki, Tomoko ; Murakami, Tomoe ; Takizumi, Yoshihiro ; Ishimaru, Hiroyuki ; Kudo, Daiki ; Takikawa, Yoshihiro ; Matsuda, Yoshinori ; Kakutani, Koji ; Bai, Yuling ; Nonomura, Teruo - \ 2018
European Journal of Plant Pathology 150 (2018)1. - ISSN 0929-1873 - p. 115 - 125.
Delayed cell death - Erysiphe trifoliorum - Hypersensitive cell death - Papilla formation - Podosphaera xanthii - Pseudoidium neolycopersici

The present study aimed to explore the possibility of using the type I trichomes of tomato (Solanum lycopersicum) to monitor the infection processes of powdery mildews by microscopy. Individual trichome cells of two tomato genotypes were inoculated with pathogenic and non-pathogenic powdery mildew species, Pseudoidium neolycopersici, Erysiphe trifoliorum and Podosphaera xanthii. On the trichome cells of the tomato cultivar Moneymaker, hyphae of the pathogenic Pseudoidium neolycopersici (isolates KTP-03 and KTP-04) grew vigorously; whereas hyphal growth of the non-pathogenic Erysiphe trifoliorum and Podosphaera xanthii ceased after appressorium formation, which was associated with papilla formation and hypersensitive cell death, respectively. Similar infection processes of the tested powdery mildews were seen in Moneymaker epidermal cells. Therefore, tomato trichomes are suitable for analysing, at individual cell level, the infection processes of different pathotypes of powdery mildews and for observing the cytological responses of plants by non-pathogenic powdery mildews. On the other hand, it was observed that both isolates KTP-03 and KTP-04 failed to produce conidiophores on the hyphae elongating on Moneymaker trichomes. Similarly, no conidiophores were produced on the hyphae elongating on trichomes of Solanum peruvianum LA2172, which is resistant to KTP-03 and susceptible to KTP-04. Interestingly, delayed cell death occurred in LA2172 epidermal cells, which were attacked by KTP-03 hyphae elongating from trichomes and conidiophores were formed on new hyphae growing from the leaf epidermal cells. Thus, leaf trichomes and epidermal cells of the wild tomato species LA2172 reacted differently to the avirulent isolate KTP-03.

The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes
Nie, Rui E. ; Breeschoten, Thijmen ; Timmermans, Martijn J.T.N. ; Nadein, Konstantin ; Xue, Huai Jun ; Bai, Ming ; Huang, Yuan ; Yang, Xing Ke ; Vogler, Alfried P. - \ 2018
Cladistics-The International Journal of the Willi Hennig Society 34 (2018)2. - ISSN 0748-3007 - p. 113 - 130.

With efficient sequencing techniques, full mitochondrial genomes are rapidly replacing other widely used markers, such as the nuclear rRNA genes, for phylogenetic analysis but their power to resolve deep levels of the tree remains controversial. We studied phylogenetic relationships of leaf beetles (Chrysomelidae) in the tribes Galerucini and Alticini (root worms and flea beetles) based on full mitochondrial genomes (103 newly sequenced), and compared their performance to the widely sequenced nuclear rRNA genes (full 18S, partial 28S). Our results show that: (i) the mitogenome is phylogenetically informative from subtribe to family level, and the per-nucleotide contribution to nodal support is higher than that of rRNA genes, (ii) the Galerucini and Alticini are reciprocally monophyletic sister groups, if the classification is adjusted to accommodate several 'problematic genera' that do not fit the dichotomy of lineages based on the presence (Alticini) or absence (Galerucini) of the jumping apparatus, and (iii) the phylogenetic results suggest a new classification system of Galerucini with eight subtribes: Oidina, Galerucina, Hylaspina, Metacyclina, Luperina, Aulacophorina, Diabroticina and Monoleptina.

Functional characterization of cucumber (Cucumis sativus L.) Clade V MLO genes
Berg, J.A. ; Appiano, Michela ; Bijsterbosch, G. ; Visser, R.G.F. ; Schouten, H.J. ; Bai, Y. - \ 2017
cucumber - cucumis sativus - powdery mildew - MLO - susceptiblity genes - gene expression
Check title to add to marked list
<< previous | next >>

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.