Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Brousolle
Check title to add to marked list
Regulation of a two-component system involved in Bacillus cereus cold adaptation
Diomandé, S.E. ; Nguyen-the, C. ; Abee, T. ; Tempelaars, M.H. ; Doublet, B. ; Brousolle, V. ; Brillard, J. - \ 2015
Phylogenetic footprinting and transcriptome profiling reveal new roles for two Bacillus cereus two-component systems
Been, M. de; Brillard, J. ; Brousolle, V. ; Abee, Tjakko - \ 2014
GSE18523 - Bacillus cereus - PRJNA120197 - Bacillus cereus ATCC 14579
Members of the Bacillus cereus group can adapt to a wide range of environmental challenges. In bacteria, these challenges are often translated into a transcriptional response via the cognate response regulators (RRs) of specialized two-component systems (TCSs). We have previously developed a phylogenetic footprinting approach that was successfully implemented to predict specific binding sites (operators) and target genes for the RRs of B. cereus and related species. In this study, this footprinting approach was integrated with transcriptome analyses of two B. cereus TCS deletion mutants, involving the TCSs YvrHG and YufLM. Comparison of mutant versus wild-type transcriptomes revealed that the respective TCSs were significantly active during the exponential growth phase in rich medium and that the footprinting-based predictions were accurate for the two TCSs. Moreover, the predicted specific operators were used in combination with the transcriptome data to guide the identification of more extended TCS regulons. This revealed new roles for the respective TCSs, including the participation in an intricate transcriptional network involved in antibiotic resistance, including the confirmed resistance to oxolinic acid (YvrHG) and the confirmed uptake and metabolism of fumarate and the repression of fermentative pathways (YufLM).
Check title to add to marked list

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.