Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 2 / 2

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Famiglietti
Check title to add to marked list
Human-water interface in hydrological modelling : Current status and future directions
Wada, Yoshihide ; Bierkens, Marc F.P. ; Roo, Ad de; Dirmeyer, Paul A. ; Famiglietti, James S. ; Hanasaki, Naota ; Konar, Megan ; Liu, Junguo ; Schmied, Hannes Möller ; Oki, Taikan ; Pokhrel, Yadu ; Sivapalan, Murugesu ; Troy, Tara J. ; Dijk, Albert I.J.M. Van; Emmerik, Tim Van; Huijgevoort, Marjolein H.J. Van; Lanen, Henny A.J. van; Vörösmarty, Charles J. ; Wanders, Niko ; Wheater, Howard - \ 2017
Hydrology and Earth System Sciences 21 (2017)8. - ISSN 1027-5606 - p. 4169 - 4193.

Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of largescale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models.

Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment
Famiglietti, J.S. ; Devereaux, J.A. ; Laymon, C.A. ; Tsegaye, T. ; Houser, P.R. ; Jackson, T.J. ; Graham, S.T. ; Rodell, M. ; Oevelen, P.J. van - \ 1999
Water Resources Research 35 (1999)6. - ISSN 0043-1397 - p. 1839 - 1851.
Surface soil moisture content is highly variable in both space and time. While remote sensing provides an effective methodology for mapping surface moisture content over large areas, it averages within-pixel variability thereby masking the underlying heterogeneity observed at the land surface. This variability must be better understood in order to rigorously evaluate sensor performance and to enhance the utility of the larger-scale remotely sensed averages by quantifying the underlying variability that remote sensing cannot record explicitly. In support of the Southern Great Plains 1997 (SGP97) Hydrology Experiment (a surface soil moisture mapping mission conducted between June 18 and July 17, 1997, in central Oklahoma) an investigation was conducted to characterize soil moisture variability within remote sensing footprints (approximately 0.64 km2) with more certainty than would be afforded with conventional gravimetric moisture content sampling. Nearly every day during the experiment period, portable impedance probes were used to intensively monitor volumetric moisture content in the 0- to 6-cm surface soil layer at six footprint-sized fields scattered over the SGP97 study area. A minimum of 49 daily moisture content measurements were made on most fields. Higher-resolution grid and transect data were also collected periodically. In total, more than 11,000 impedance probe measurements of volumetric moisture content were made at the six sites by over 35 SGP97 participants. The wide spatial distribution of the sites, combined with the intensive, near-daily monitoring, provided a unique opportunity (relative to previous smaller-scale and shorter-duration soil moisture studies) to characterize variations in surface moisture content over a range of wetness conditions. In this paper the range and temporal dynamics of the variability in moisture content within each of the six fields are described, as are general relationships between the variability and footprint-mean moisture content. Results indicate that distinct differences in mean moisture content between the six sites are consistent with variations in soil type, vegetation cover, and rainfall gradients. Within fields the standard deviation, coefficient of variation, skewness, and kurtosis increased with decreasing moisture content; the distribution of surface moisture content evolved from negatively skewed/nonnormal under very wet conditions, to normal in the midrange of mean moisture content, to positively skewed/nonnormal under dry conditions; and agricultural practices of row tilling and terracing were shown to exert a major control on observed moisture content variations. Results presented here can be utilized to better evaluate sensor performance, to extrapolate estimates of subgrid-scale variations in moisture content across the entire SGP97 region, and in the parameterization of soil moisture dynamics in hydrological and land surface models. | Surface soil moisture content is highly variable in both space and time. While remote sensing provides an effective methodology for mapping surface moisture content over large areas, it averages within-pixel variability thereby masking the underlying heterogeneity observed at the land surface. This variability must be better understood in order to rigorously evaluate sensor performance and to enhance the utility of the larger-scale remotely sensed averages by quantifying the underlying variability that remote sensing cannot record explicitly. In support of the Southern Great Plains 1997 (SGP97) Hydrology Experiment (a surface soil moisture mapping mission conducted between June 18 and July 17, 1997, in central Oklahoma) an investigation was conducted to characterize soil moisture variability within remote sensing footprints (approximately 0.64 km2) with more certainty than would be afforded with conventional gravimetric moisture content sampling. Nearly every day during the experiment period, portable impedance probes were used to intensively monitor volumetric moisture content in the 0- to 6-cm surface soil layer at six footprint-sized fields scattered over the SGP97 study area. A minimum of 49 daily moisture content measurements were made on most fields. Higher-resolution grid and transect data were also collected periodically. In total, more than 11,000 impedance probe measurements of volumetric moisture content were made at the six sites by over 35 SGP97 participants. The wide spatial distribution of the sites, combined with the intensive, near-daily monitoring, provided a unique opportunity (relative to previous smaller-scale and shorter-duration soil moisture studies) to characterize variations in surface moisture content over a range of wetness conditions. In this paper the range and temporal dynamics of the variability in moisture content within each of the six fields are described, as are general relationships between the variability and footprint-mean moisture content. Results indicate that distinct differences in mean moisture content between the six sites are consistent with variations in soil type, vegetation cover, and rainfall gradients. Within fields the standard deviation, coefficient of variation, skewness, and kurtosis increased with decreasing moisture content; the distribution of surface moisture content evolved from negatively skewed/nonnormal under very wet conditions, to normal in the midrange of mean moisture content, to positively skewed/nonnormal under dry conditions; and agricultural practices of row tilling and terracing were shown to exert a major control on observed moisture content variations. Results presented here can be utilized to better evaluate sensor performance, to extrapolate estimates of subgrid-scale variations in moisture content across the entire SGP97 region, and in the parameterization of soil moisture dynamics in hydrological and land surface models.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.