Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 4 / 4

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: q=Portmann
Check title to add to marked list
Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies
Ulaszewska, Marynka M. ; Weinert, Christoph H. ; Trimigno, Alessia ; Portmann, Reto ; Andres Lacueva, Cristina ; Badertscher, René ; Brennan, Lorraine ; Brunius, Carl ; Bub, Achim ; Capozzi, Francesco ; Cialiè Rosso, Marta ; Cordero, Chiara E. ; Daniel, Hannelore ; Durand, Stéphanie ; Egert, Bjoern ; Ferrario, Paola G. ; Feskens, Edith J.M. ; Franceschi, Pietro ; Garcia-Aloy, Mar ; Giacomoni, Franck ; Giesbertz, Pieter ; González-Domínguez, Raúl ; Hanhineva, Kati ; Hemeryck, Lieselot Y. ; Kopka, Joachim ; Kulling, Sabine E. ; Llorach, Rafael ; Manach, Claudine ; Mattivi, Fulvio ; Migné, Carole ; Münger, Linda H. ; Ott, Beate ; Picone, Gianfranco ; Pimentel, Grégory ; Pujos-Guillot, Estelle ; Riccadonna, Samantha ; Rist, Manuela J. ; Rombouts, Caroline ; Rubert, Josep ; Skurk, Thomas ; Sri Harsha, Pedapati S.C. ; Meulebroek, Lieven Van; Vanhaecke, Lynn ; Vázquez-Fresno, Rosa ; Wishart, David ; Vergères, Guy - \ 2018
Molecular Nutrition & Food Research 63 (2018)1. - ISSN 1613-4125
GC–MS - LC–MS - metabolomics - NMR - nutrition
The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state-of-the-art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful “tips and tricks” along the analytical workflow.
The critical role of the routing scheme in simulating peak river discharge in global hydrological models
Zhao, Fang ; Veldkamp, Ted I.E. ; Frieler, Katja ; Schewe, Jacob ; Ostberg, Sebastian ; Willner, Sven ; Schauberger, Bernhard ; Gosling, Simon N. ; Schmied, Hannes Müller ; Portmann, Felix T. ; Leng, Guoyong ; Huang, Maoyi ; Liu, Xingcai ; Tang, Qiuhong ; Hanasaki, Naota ; Biemans, Hester ; Gerten, Dieter ; Satoh, Yusuke ; Pokhrel, Yadu ; Stacke, Tobias ; Ciais, Philippe ; Chang, Jinfeng ; Ducharne, Agnes ; Guimberteau, Matthieu ; Wada, Yoshihide ; Kim, Hyungjun ; Yamazaki, Dai - \ 2017
Environmental Research Letters 12 (2017)7. - ISSN 1748-9318
daily runoff - flood - global hydrological models - GRDC - ISIMIP - peak river discharge - river routing
Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge - which is crucial in flood simulations - has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.
The harmonized INFOGEST in vitro digestion method : From knowledge to action
Egger, Lotti ; Ménard, Olivia ; Delgado-Andrade, Cristina ; Alvito, Paula ; Assunção, Ricardo ; Balance, Simon ; Barberá, Reyes ; Brodkorb, Andre ; Cattenoz, Thomas ; Clemente, Alfonso ; Comi, Irene ; Dupont, Didier ; Garcia-Llatas, Guadalupe ; Lagarda, María Jesús ; Feunteun, Steven Le; Janssen Duijghuijsen, Lonneke ; Karakaya, Sibel ; Lesmes, Uri ; Mackie, Alan R. ; Martins, Carla ; Meynier, Anne ; Miralles, Beatriz ; Murray, B.S. ; Pihlanto, Anne ; Picariello, Gianluca ; Santos, C.N. ; Simsek, Sebnem ; Recio, Isidra ; Rigby, Neil ; Rioux, Laurie Eve ; Stoffers, Helena ; Tavares, Ana ; Tavares, Lucelia ; Turgeon, Sylvie ; Ulleberg, E.K. ; Vegarud, G.E. ; Vergères, Guy ; Portmann, Reto - \ 2016
Food Research International 88 (2016)Par B. - ISSN 0963-9969 - p. 217 - 225.
Dairy proteins - Harmonized IVD protocol - In vitro digestion - Inter-laboratory trial - Mass spectrometry - Peptides

Within the active field of in vitro digestion in food research, the COST Action INFOGEST aimed to harmonize in vitro protocols simulating human digestion on the basis of physiologically inferred conditions. A harmonized static in vitro digestion (IVD) method was recently published as a primary output from this network. To validate this protocol, inter-laboratory trials were conducted within the INFOGEST network. A first study was performed using skim milk powder (SMP) as a model food and served to compare the different in-house digestion protocols used among the INFOGEST members. In a second inter-laboratory study applying the harmonized protocol, the degree of consistency in protein hydrolysis was investigated. Analysis of the hydrolyzed proteins, after the gastric and intestinal phases, showed that caseins were mainly hydrolyzed during the gastric phase, whereas β-lactoglobulin was, as previously shown, resistant to pepsin. Moreover, generation of free amino acids occurred mainly during the intestinal phase.The study also showed that a few critical steps were responsible for the remaining inter-laboratory variability. The largest deviations arose from the determination of pepsin activity. Therefore, this step was further clarified, harmonized, and implemented in a third inter-laboratory study.The present work gives an overview of all three inter-laboratory studies, showing that the IVD INFOGEST method has led to an increased consistency that enables a better comparability of in vitro digestion studies in the future.

Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP
Davie, J.C.S. ; Falloon, P.D. ; Kahana, R. ; Dankers, R. ; Betts, R. ; Portmann, F.T. ; Wisser, D. ; Clark, D.B. ; Ito, A. ; Masaki, Y. ; Nishina, K. ; Fekete, B. ; Tessler, Z. ; Wada, Y. ; Liu, X. ; Tang, Q. ; Hagemann, S. ; Stacke, T. ; Pavlick, R. ; Schaphoff, S. ; Gosling, S.N. ; Franssen, W.H.P. ; Arnell, N. - \ 2013
Earth System dynamics 4 (2013)2. - ISSN 2190-4979 - p. 359 - 374.
climate-change - carbon-dioxide - integrated model - hadgem2 family - surface-water - river flow - vegetation - impact - co2 - evapotranspiration
Future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Inter-comparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed for differences between impact models. Projections of change from a baseline period (1981-2010) to the future (2070-2099) from 12 impacts models which contributed to the hydrological and biomes sectors of ISI-MIP were studied. The biome models differed from the hydrological models by the inclusion of CO2 impacts and most also included a dynamic vegetation distribution. The biome and hydrological models agreed on the sign of runoff change for most regions of the world. However, in West Africa, the hydrological models projected drying, and the biome models a moistening. The biome models tended to produce larger increases and smaller decreases in regionally averaged runoff than the hydrological models, although there is large inter-model spread. The timing of runoff change was similar, but there were differences in magnitude, particularly at peak runoff. The impact of vegetation distribution change was much smaller than the projected change over time, while elevated CO2 had an effect as large as the magnitude of change over time projected by some models in some regions. The effect of CO2 on runoff was not consistent across the models, with two models showing increases and two decreases. There was also more spread in projections from the runs with elevated CO2 than with constant CO2. The biome models which gave increased runoff from elevated CO2 were also those which differed most from the hydrological models. Spatially, regions with most difference between model types tended to be projected to have most effect from elevated CO2, and seasonal differences were also similar, so elevated CO2 can partly explain the differences between hydrological and biome model runoff change projections. Therefore, this shows that a range of impact models should be considered to give the full range of uncertainty in impacts studies.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.