Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 20 / 336

  • help
  • print

    Print search results

  • export
    A maximum of 250 titles can be exported. Please, refine your queryYou can also select and export up to 30 titles via your marked list.
  • alert
    We will mail you new results for this query: wurpublikatie/titelbeschrijving/classificatie/trefwoord/cab/engels==dairy cows
Check title to add to marked list
Consequences of dry period length and dietary energy source on physiological health variables in dairy cows and calves
Mayasari, Nova - \ 2017
University. Promotor(en): Bas Kemp, co-promotor(en): Ariette van Knegsel; Henk Parmentier. - Wageningen : Wageningen University - ISBN 9789463431408 - 221
dairy cows - calves - dry period - feed rations - feeds - energy balance - animal health - inflammation - antibodies - adaptation physiology - immunology - melkkoeien - kalveren - gustperiode - voedingsrantsoenen - voer - energiebalans - diergezondheid - ontsteking - antilichamen - adaptatiefysiologie - immunologie

During the transition period, dairy cows experience a negative energy balance (NEB) caused by the high energy requirement for milk yield, while feed intake is limited. Severity of the NEB has been associated with an increased incidence of metabolic disorders and infectious diseases, inflammation, immunosuppression and oxidative stress. It is known that shortening or omitting the dry period or feeding a glucogenic ration improves the energy balance (EB) in dairy cows in early lactation. It can be expected that an improvement of the EB due to shortening or omitting the dry period results in reduced inflammation, immunosuppression and less oxidative stress in dairy cows in early lactation. The first objective of this thesis was to study the effects of dry period length and dietary energy source on immune competence, inflammatory biomarkers and oxidative stress in dairy cows over 2 subsequent lactations. The second objective was to study the consequences of maternal dry period length on colostrum immunoglobulin content and immune competence of calves in the first 12 weeks of life. In the current study, 167 cows were assigned to 3 dry period lengths (0, 30, or 60 d) and 2 early lactation rations (glucogenic or lipogenic). Cows were planned to have the same dry period length and ration over 2 subsequent lactations. Omitting the dry period reduced plasma bilirubin levels compared with a conventional dry period, which is line with the better EB in cows with a 0-d dry period. Effects of dry period length on inflammatory biomarkers, oxidative stress variables and natural antibodies (NAb) titers were, however, less consistent. Omitting the dry period increased not only negative acute phase proteins (APP) in plasma, but also positive APP, oxidative stress variables in plasma, and NAb in milk. Shortening the dry period to 30-d did not influence inflammatory biomarkers and oxidative stress compared with a conventional dry period of 60-d. Occurrence of clinical health problems did not differ between cows with different dry period lengths. In the current study, changes in positive APP and oxidative stress variables in plasma and NAb in milk could be explained by the occurrence of clinical health problems related to inflammation (clinical mastitis, fever, metritis and retained placenta), rather than a better EB due to a shorter or no dry period. Moreover, a higher titer of IgG binding lipopolysaccharide in plasma was associated with decreased odds of high somatic cell count and occurrence of clinical mastitis. In the first lactation after implementation of dry period length and dietary treatments, feeding a glucogenic ration in early lactation increased NAb titers in milk compared with a lipogenic ration, which could be explained partly by a better EB. In the second lactation after implementation of dry period length and dietary treatments, feeding a lipogenic ration in early lactation increased cholesterol levels in plasma compared with a glucogenic ration, which could be related to the high fat content in this ration. Cows with a 0-d dry period had a lower colostrum production and less immunoglobulins in colostrum compared with cows with a 30-d or 60-d dry period. After colostrum uptake, NAb titers in plasma of calves from cows with a 0-d dry period were lower during the first week of life compared with calves from cows with a 30-d or 60-d dry period. Levels of specific antibodies in calves, after immunization in week 6 and 10, in calves were not affected by the maternal dry period length. Birth weight of calves from cows with a 0-d dry period was lower compared with calves from cows with a 30-d dry period, but not compared with calves from cows with a 60-d dry period. Growth of calves until 12 weeks of life was not affected by dry period length. In conclusion, although shortening and omitting the dry period improved the EB in early lactation, this did not result in clear consistent effects of dry period length on inflammation or oxidative stress. Changes in inflammation biomarkers, oxidative stress variables and NAb in milk were a reflection of the occurrence of health problems related to inflammation in particular clinical mastitis and compromised uterine health. Furthermore, albeit omitting the dry period compared with shortening or conventional dry period cows resulted in a reduced immunoglobulin content in colostrum and reduced NAb titers in plasma of their calves in the first week of life, but did not affect specific immune response of the calves in the first 12 weeks of life.

Milk progesterone measures to improve genomic selection for fertility in dairy cows
Tenghe, Amabel Manyu Mefru - \ 2017
University. Promotor(en): Roel Veerkamp; B. Berglund, co-promotor(en): D. J. de Koning; Aniek Bouwman. - Wageningen : Wageningen University - ISBN 9789463431330 - 179
dairy cows - fertility - progesterone - milk - genomics - genetic improvement - heritability - genetic parameters - dairy performance - reproductive traits - animal genetics - animal breeding - dairy farming - melkkoeien - vruchtbaarheid - progesteron - melk - genomica - genetische verbetering - genetische parameters - melkresultaten - voortplantingskenmerken - diergenetica - dierveredeling - melkveehouderij

Improved reproductive performance has a substantial benefit for the overall profitability of dairy cattle farming by decreasing insemination and veterinary treatment costs, shortening calving intervals, and lowering the rate of involuntary culling. Unfortunately, the low heritability of classical fertility traits derived from calving and insemination data makes genetic improvement by traditional animal breeding slow. Therefore, there is an interest in finding novel measures of fertility that have a higher heritability or using genomic information to aid genetic selection for fertility. The overall objective of this thesis was to explore the use of milk progesterone (P4) records and genomic information to improve selection for fertility in dairy cows. In a first step, the use of in-line milk progesterone records to define endocrine fertility traits was investigated, and genetic parameters estimated. Several defined endocrine fertility traits were heritable, and showed a reasonable repeatability. Also, the genetic correlation of milk production traits with endocrine fertility traits were considerably lower than the correlations of milk production with classical fertility traits. In the next step 17 quantitative trait loci (QTL) associated with endocrine fertility traits, were identified on Bos taurus autosomes (BTA) 2, 3, 8, 12, 15, 17, 23, and 25 in a genome-wide association study with single nucleotide polymorphisms. Further, fine-mapping of target regions on BTA 2 and 3, identified several associated variants and potential candidate genes underlying endocrine fertility traits. Subsequently, the optimal use of endocrine fertility traits in genomic evaluations was investigated; using empirical and theoretical predictions for single-trait models, I showed that endocrine fertility traits have more predictive ability than classical fertility traits. The accuracy of genomic prediction was also substantially improved when endocrine and classical fertility traits were combined in multi-trait genomic prediction. Finally, using deterministic predictions, the potential accuracy of multi-trait genomic selection when combining a cow training population measured for the endocrine trait commencement of luteal activity (C-LA), with a training population of bulls with daughter observations for a classical fertility trait was investigated. Results showed that for prediction of fertility, there is no benefit of investing in a cow training population when the breeding goal is based on classical fertility traits. However, when considering a more biological breeding goal for fertility like C-LA, accuracy is substantially improved when endocrine traits are available from a limited number of farms.

Assessing methane emission from dairy cows : modeling and experimental approaches on rumen microbial metabolism
Lingen, Henk J. - \ 2017
University. Promotor(en): Wouter Hendriks, co-promotor(en): Jan Dijkstra; Andre Bannink; Caroline Plugge. - Wageningen : Wageningen University - ISBN 9789463431590 - 207
dairy cows - methane - emission - microbial degradation - rumen metabolism - rumen fermentation - models - fatty acids - biochemical pathways - animal nutrition - nutrition physiology - melkkoeien - methaan - emissie - microbiële afbraak - pensmetabolisme - pensfermentatie - modellen - vetzuren - biochemische omzettingen - diervoeding - voedingsfysiologie

Methane (CH4) is a greenhouse gas (GHG) with a global warming potential of 28 CO2 equivalents. The livestock sector was estimated to emit 7.1 gigatonnes of CO2 equivalents, which is approximately 14.5% of total global anthropogenic GHG emissions. Enteric CH4 production is the main source of GHG emissions from dairy cattle, representing 46% of the global GHG emissions in dairy supply chains. Dairy production has great value in view of the ability of ruminants to effectively turn human inedible biomass into human edible food and to produce food from non-arable land. Consequently, there is an urgent need to develop strategies to decrease dairy cattle enteric CH4 emission. Evaluation of these strategies requires meticulous quantification and increased understanding of anaerobic fermentation and methanogenesis in the rumen ecosystem. The overall aim of this PhD research was, therefore, to quantitatively evaluate enteric CH4 emission from dairy cows as affected by feeding and rumen microbial metabolism.

A meta-analysis was performed to quantify relationships between enteric CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Various milk FA concentrations were significantly or tended to be positively or negatively related to CH4 yield per unit of feed or milk. Mixed model multiple regression resulted in various milk FA included in optimal equations to predict CH4 yield per unit of feed and per unit of milk. These regression equations indicated a moderate potential for using milk FA profile to predict CH4 yield.

For the development of a mechanistic model of CH4 production in the rumen, the thermodynamic control of pH2 on reaction rates of specific fermentation pathways, NADH oxidation and methanogenesis was theoretically explored. This control was determined using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. The thermodynamic feasibility of these microbial conversions showed that the control of pH2 on individual VFA produced and associated yield of H2 and CH4 cannot be explained without considering NADH oxidation, with a considerable effect of pH.

For obtaining experimental support of the conclusions drawn from the theoretical exploration, diurnal patterns of gaseous and dissolved metabolite concentrations in the bovine rumen, H2 and CH4 emitted, and the rumen microbiota were monitored. In addition, the effect of dietary inclusion of linseed oil on these patterns was assessed. An in vivo experiment with rumen cannulated dairy cows was performed to study the anaerobic metabolism and the microbiota composition in the rumen. A 100-fold increase in pH2 in the rumen headspace was observed at 0.5 h after feeding, followed by a decline. Qualitatively similar patterns after feeding were observed for H2 and CH4 emission, ethanol and lactate concentrations, and propionate molar proportion, whereas an opposite pattern was seen for acetate molar proportion. Associated with these patterns, a temporal biphasic change in the microbial composition was observed as based on 16S ribosomal RNA with certain taxa specifically associated with each phase. Bacterial concentrations were affected by time and increased by linseed oil supplementation. Archaeal concentrations tended to be affected by time and were not affected by diet, despite linseed oil supplementation tending to decrease the partial pressure and emission of CH4 and tending to increase propionate molar proportion. The various diurnal profiles that were monitored support the key role of the NAD+ to NADH ratio in rumen fermentation and the importance of diurnal dynamics when understanding VFA, H2 and CH4 production.

A dynamic mechanistic model was developed, in which the thermodynamic control of pH2 on VFA fermentation pathways, and methanogenesis in the bovine rumen are incorporated. The model represents substrate degradation, microbial fermentation and methanogenesis in the rumen, with the type of VFA formed to be controlled by the NAD+ to NADH ratio, which in turn is controlled by pH2. Feed composition and feed intake rate representing a twice daily feeding regime were used as model input. The model predicted a marked peak in pH2 after feeding that rapidly declined in time. This peak in pH2 caused a decrease in NAD+ to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion. In response to feeding, the model predicted a sudden increase and a steady decrease in CH4 production in time. The pattern of CH4 emission rate followed the patterns of pH2 and H2 emission rate, but its magnitude of increase in response to feeding was less pronounced. A global sensitivity analysis indicated the parameter that determines the NADH oxidation rate to explain the most substantial part of the variation of predicted daily CH4 emission. The modeling effort provides the integration of more detailed knowledge than accomplished in previous rumen fermentation models and enables assessment of diurnal dynamics of rumen metabolic pathways yielding VFA, H2 and CH4.

For assessing the general value of the research reported in this thesis, the potential for predicting enteric CH4 emission from dairy cattle based on milk FA profile was discussed in the light of published studies and compared with empirical modeling of enteric CH4 based on feed input. Moreover, the concept of NAD-controlled fermentation was considered in a more general perspective by comparing the rumen ecosystem with bioreactor systems. Furthermore, the feasibility of the developed models as an alternative for IPCC tiered approaches was explored. In conclusion, the research reported in this thesis contributes to an increased understanding of rumen fermentation and microbial metabolism, and has provides a basis to further improve prediction models of enteric CH4 emissions from dairy cattle.

Genetic improvement of longevity in dairy cows
Pelt, Mathijs van - \ 2017
University. Promotor(en): Roel Veerkamp, co-promotor(en): T.H.E. Meuwissen. - Wageningen : Wageningen University - ISBN 9789463430821 - 188
dairy cows - longevity - genetic improvement - breeding value - genetic analysis - survival - animal models - animal genetics - melkkoeien - gebruiksduur - genetische verbetering - fokwaarde - genetische analyse - overleving - diermodellen - diergenetica

Improving longevity helps to increase the profit of the farmer, and it is seen as an important measure of improved animal welfare and sustainability of the sector. Breeding values for longevity have been published since in 1999 in the Netherlands. For AI-companies and farmers it is necessary that breeding values are accurately estimated and will remain stable for the rest of life. However, current breeding values for longevity of bulls seem to fluctuate more than expected. The main aim of this thesis was to revisit the genetics of longevity and develop a genetic evaluation model for longevity, where breeding values reflect the true breeding value quicker during early life and therefore breeding values become more stable. Genetic parameters were estimated for survival up to 72 months after first calving with a random regression model (RRM). Survival rates were higher in early life than later in life (99 vs. 95%). Survival was genetically not the same trait across the entire lifespan, because genetic correlations differ from unity between different time intervals, especially when intervals were further apart. Survival in the first year after first calving was investigated more in depth. Survival of heifers has improved considerably in the past 25 years, initially due to the focus on a high milk production. More recently, the importance of a high milk production for survival has been reduced. Therefore functional survival was defined as survival adjusted for within-herd production level. For survival the optimum age at first calving was around 24 months, whereas for functional survival calving before 24 months resulted in a higher survival. Over years, genetic correlations between survival in different 5-yr intervals were below unity, whereas for functional survival genetic correlations did not indicate that survival changed over years. This suggested that a genetic evaluation using historical data should analyze functional survival rather than survival. A new genetic evaluation system for longevity was developed based on a RRM analyzing functional survival. Based on the correlation between the first breeding value of a bull and his later breeding values, the ranking of bulls was shown to be more stable for RRM than the current genetic evaluation. Bias in breeding value was observed, mainly for bulls with a large proportion of living daughters. Adjusting for within-herd production level reduced this bias in the breeding values greatly. Before implementing this new model for genetic evaluation, the cause of this bias needs to be further investigated.

Dry period length of dairy cows : milk composition and quality
Vries, Ruben de - \ 2017
University. Promotor(en): Toon van Hooijdonk; K. Holtenius, co-promotor(en): Kasper Hettinga; H.L.M. Lindmark-Månsson. - Wageningen : Wageningen University - ISBN 9789463430463 - 141
dairy cows - dry period - milk composition - milk quality - milk - casein - micelles - melkkoeien - gustperiode - melksamenstelling - melkkwaliteit - melk - caseïne - micellen

A dry period of dairy cows is historically seen as a period during which the cow can restore its body condition and regenerate its mammary epithelium in order to be high yielding in the successive lactation. Recent work has indicated that high yielding cows generally experience a severe negative energy balance in early lactation. Dry period reduction is a strategy to improve the energy balance of dairy cows in early lactation. This thesis aimed at evaluating the influence of dry period length on milk composition and milk quality. Milk composition parameters indicate the processing quality of milk for the dairy plant, and may also reflect the physiological condition and energy status of the cow.

In this work, omission of the dry period was related to a reduced β-casein fraction in early lactation milk. Applying a short (4 weeks) instead of a conventional (8 weeks) dry period resulted in increased plasmin activity in milk, but did not affect the β-casein fraction. Increased plasmin activity in relation to a shortened dry period was particularly found in milk of cows of third or higher parity, that generally had relatively high somatic cell count. At low somatic cell counts, dry period reduction or omission only tended to result in an increased plasmin activity due a higher casein concentration in milk. From increased concentrations of a number of low abundant proteins in colostrum of cows with a short dry period it was hypothesized that a short dry period was related to increased proliferation of mammary epithelial cells during the first days in lactation.

Although the casein composition of milk was related to both plasmin activity in milk and the metabolic status of cows, which are both influenced by dry period length, quantitative differences in casein composition of cows with different dry period length were small. It was concluded that shortening or omitting the dry period of cows with good mammary health obtains milk with a higher protein content with little differences in protein composition.

Shortening or omitting the dry period in dairy cows : effects on milk yield, energy balance, metabolic status, and fertility
Chen, Juncai - \ 2016
University. Promotor(en): Bas Kemp, co-promotor(en): Ariette van Knegsel. - Wageningen : Wageningen University - ISBN 9789462579088 - 205
dairy cows - dairy cattle - dry period - milk yield - energy balance - metabolism - lactation - melkkoeien - melkvee - gustperiode - melkopbrengst - energiebalans - metabolisme - lactatie

During early lactation, dairy cows typically experience negative energy balance (EB) caused by the high energy requirement for milk yield, which cannot be met by feed intake. Severity of negative EB has been associated with an increased incidence of metabolic disorders and infectious diseases, subfertility, and increased culling rates. Shortening or omitting the dry period (DP) and feeding glucogenic diet could possibly improve EB in dairy cows. The objective of this thesis was to study the effects of shortening or omitting the DP on milk yield, energy balance, metabolism, and fertility over two subsequent lactations in dairy cows fed a lipogenic or glucogenic diet during early lactation. In the current study, 167 cows were assigned to three DP lengths (0, 30, or 60 days) and two early lactation diets (glucogenic or lipogenic diet), and cows were planned to have same DP length and diet over two subsequent lactations. In the first lactation after DP length and dietary treatments, shortening or omitting the DP improved EB due to a decreased milk yield in the early lactation compared with a conventional DP of 60 days. Omitting the DP or feeding a glucogenic diet improved metabolic status in early lactation. Moreover, omitting the DP increased the percentage of cows with normal resumption of ovarian cyclicity. Shortening the DP to 30 d did not influence metabolic status and fertility compared with conventional DP in dairy cows. In the first lactation, the cows with a 0-d DP had less milk but similar energy intake, leading to excessive weight gain and, therefore, high body condition score (BCS) at onset of the second lactation after DP length and dietary treatments. In the second lactation, improvement of EB in cows with a 0-d DP was less pronounced than the first lactation, which could be related to the high BCS at onset of lactation and reduced milk yield losses. Shortening or omitting the DP did not influence uterine health status, ovarian activity, and reproductive performance in the second lactation. In second lactation, feeding a glucogenic diet improved metabolic status and shortened the interval from calving to first ovulation compared with a lipogenic diet without affecting EB independent of DP length. Furthermore, shortening or omitting the DP decreased peak yield but did not influence lactation persistency in both lactations after implementation of DP treatment. In conclusion, omitting the DP improved metabolic status and resumption of ovarian activity, which was related to an improved EB in early lactation. Shortening the DP for two subsequent lactations could be achieved for most cows with limited milk yield losses. Independent of DP length, glucogenic diet improved EB and metabolic status compared with lipogenic diet in early lactation.

PASsend beweiden
Mosquera, J. ; Philipsen, B. ; Bruggen, C. van; Groenestein, C.M. ; Ogink, N.W.M. - \ 2016
Wageningen : Wageningen UR Livestock Research (Livestock Research report 983) - 23
melkkoeien - melkvee - begrazing - ammoniakemissie - rundveemest - rundveeteelt - dairy cows - dairy cattle - grazing - ammonia emission - cattle manure - cattle farming
Grazing is a possible measure within PAS (Programmatic Approach Nitrogen) to reduce ammonia emissions from cattle farming (PAS 2015.08.02). In order to be applied, all dairy cows should be grazing for at least 720 hours per year. This measure is being assigned an ammonia emission reduction of 5%. The purpose of this desk study is to identify and quantify the effect of grazing on the ammonia emission from/in perspective of the whole manure chain for different grazing strategies.
Refining a model-based assessment strategy to estimate the ammonia emission from floors in dairy cow houses
Snoek, Dennis J.W. - \ 2016
University. Promotor(en): Peter Groot Koerkamp, co-promotor(en): Nico Ogink; Hans Stigter. - Wageningen : Wageningen University - ISBN 9789462578852 - 182
dairy cows - stalls - ammonia emission - floors - modeling - mitigation - sensors - ph - temperature - urea - melkkoeien - stallen - ammoniakemissie - vloeren - modelleren - mitigatie - temperatuur - ureum

Ammonia (NH3) emission is still high, and agriculture is still the dominant contributor. In The Netherlands, the NH3 emission from dairy cow houses is one of the most important sources. A lot of research has been conducted to understand and model NH3 emission, to measure it, and to reduce it using identified and developed reduction measures. However, our understanding of how to measure and how to reduce the NH3 emission is still limited. In addition, the set emission ceilings were lowered for 2020.

The objective of this thesis was to refine a model-based assessment strategy to estimate the ammonia emission from floors in dairy cow houses. First the most important input variables and process parameters were identified with a sensitivity analysis in currently available mechanistic NH3 emission models and theory. It was concluded that five puddle related input variables caused the largest variation in NH3 emission estimation, being the puddle pH, depth (Dp), urinary urea nitrogen concentration (UUN), surface area (Ap), and temperature (Tliq). For each input variable the available data was scarce, and it was therefore recommended to measure these five most important variables in practice. However, measurement methods were hardly available. Therefore, sensors were chosen, new measurement methods were developed, and these were combined in a protocol to measure the pH, Dp, UUN, Ap and Tliq of fresh, random and manually created urine puddles in commercial dairy cow houses.

In total 16 commercial dairy cow houses were assessed in a factorial experimental setup based on four floor-management types in two Seasons, with PREclean treatment. PREclean represented intense-floor-cleaning that was compared to on-farm manure scraping. A V-shaped asphalt floor had significantly larger values for both Ap (1.04 m2) and Dp (1.5 mm) than did the slatted and grooved floors (0.76 m2, 0.93 mm). For both Ap and Dp the variation within a farm was large, but was negligible between farms. The Dp values and variation were 3 to 6 times larger than currently assumed. With PREclean treatment the Dp resulted in about 3 times lower values compared to the on-farm scraping. In short, the potential NH3 emission reduction of good floor cleaning is large. Overall mean values were 4.27 kg m-3 for UUN, an initial pH(t=0) of 8.3, both in fresh puddles, and a pH(t=ξ) of 9.0 for random puddles at a random time. For UUN both the variation within and between farms was large, whereas the variation for pH was small. Both the mean UUN and pH showed lower values than currently assumed. In a separate 4 h time series experiment at 3 commercial farms was shown that the pH, on average, quickly increased initially, declined after 1 h and then became stable. The calculated NH3 in kg puddle-1 showed a huge range and was considerably larger than currently assumed for the reference situation.

Compared to the aforementioned sensitivity analysis outcome, the UUN range at farm level is both slightly smaller and shifts to slightly lower values, while for Dp the range and values are both larger. These two variables caused the largest variation in the estimated NH3 emissions, and not the pH. In conclusion, these two variables certainly need to be measured in individual commercial dairy cow houses to estimate the NH3 emission. For Ap, pH and Tair the measured ranges at farm level were less large. The pH turns out to be fairly stable in commercial cow houses and, related to that, it causes less variation in the estimated NH3 emission. Nevertheless, the pH still ranks as the third most important variable, and therefore needs to be measured in individual cow houses. The Ap is fairly stable between farms, but varies within farms and it still has a significant effect on the NH3 emission. The floor design clearly affects the puddle area Ap. Therefore, it is not necessary to measure Ap at each individual farm, but it is sufficient to measure the Ap in only one commercial cow house per floor design. The Tair variable is of limited importance compared to the aforementioned four variables, but it is still significant.

Eindrapportage Veerkracht van Melkvee I : verandering van dynamiek, voorspellende kracht
Dixhoorn, Ingrid van; Mol, Rudi de; Werf, Joop van der; Reenen, Kees van - \ 2016
Wageningen : Wageningen UR Livestock Research (Livestock Research rapport 956) - 94
melkkoeien - melkvee - gustperiode - lactatie - rundveeziekten - diergezondheid - diergedrag - dierfysiologie - gegevens verzamelen - voorspelling - rundveeteelt - dairy cows - dairy cattle - dry period - lactation - cattle diseases - animal health - animal behaviour - animal physiology - data collection - prediction - cattle farming
The transition period is a critical phase in the life of dairy cows. Early identification of cows at risk for disease would allow for early intervention and optimization of the transition period. Based on the theory of resilience of biological systems we hypothesize that the level of vulnerability of an individual cow can be quantified by describing dynamical aspects of continuously measured physiological and behavioural variables. To examine the relationship between the risk to develop diseases early in lactation and dynamic patterns of high-resolution, physiological and behavioural data, were continuously recorded in individual cows before calving. Dynamic, quantitative parameters for high-resolution physiological and behavioural measures, continuously acquired during the dry period have predictive value for the risk of cows to develop diseases during the early lactation period. Our results suggest that quantitative parameters derived from sensor data may reflect the level of resilience of individual cows.
Onderhoudsbehoefte melkkoe groter dan gedacht : droge koe heeft 30 procent meer onderhoudsvoer nodig dan huidige normering
Spek, Wouter - \ 2016
dairy cows - dairy farming - milk production - feed intake - power requirement - restricted feeding

De melkproductie en voeropname per koe zijn afgelopen jaren gestegen en daarmee ook de omvang van het maag-darmstelsel. Wageningse onderzoekers bekeken daarom of de normen voor onderhoudsbehoefte in rantsoenberekeningen nog passen bij de moderne melkkoe.

Low Emission Feed : using feed additives to decrease methane production in dairy cows
Klop, G. - \ 2016
University. Promotor(en): Wouter Hendriks, co-promotor(en): Jan Dijkstra; Andre Bannink. - Wageningen : Wageningen University - ISBN 9789462578944 - 168 p.
feeds - emission - feed additives - dairy cows - methane production - nitrates - docosahexaenoic acid - milk composition - voer - emissie - voedertoevoegingen - melkkoeien - methaanproductie - nitraten - docosahexaeenzuur - melksamenstelling

Research into manipulating methane (CH4) production as a result of enteric fermentation in ruminants currently receives global interest. Using feed additives may be a feasible strategy to mitigate CH4 as they are supplied in such amounts that the basal diet composition will not be largely affected. The latter is relevant because ruminants have the capacity to convert human inedible feedstuffs into human edible energy and protein. However, the application of CH4 mitigation feed additives may be hampered by several negative side effects including trade-offs with other environmental impacts, negative effects on animal performance, and lack of persistency of the mitigating effect. The research described in this thesis addresses both the mitigating effect of feed additives as well as its persistency. The main focus was on investigating additivity of the CH4 mitigating effect of feed additives, on the adaptation of rumen microbes to long term feeding of feed additives, and on exploring the potential of rotational feeding of additives to avoid (or reduce) microbial adaptation.

In an experiment with lactating dairy cows in climate respiration chambers to study potential interactions between the effects of feeding nitrate and docosahexaenoic acid (DHA; C22:6 n-3) on enteric CH4 production, the effects of nitrate and DHA on CH4 yield [g/kg dry matter intake (DMI)] and CH4 intensity [g/kg fat- and protein- corrected milk (FPCM)], were additive (Chapter 2). Nitrate decreased CH4 irrespective of the unit in which it was expressed, and the average decline in CH4 emission corresponds to 85% of the stoichiometric potential of nitrate to decrease CH4. Feeding DHA had no effect on CH4 yield, but resulted in a higher CH4 intensity, because of milk fat depression. The interaction effect between nitrate and DHA on fiber digestibility indicated that negative effects of nitrate on apparent total tract digestibility of nutrients were alleviated by DHA, probably due to an altered feed intake pattern.

Using an isotope measurement protocol in the same study, it was demonstrated that effects of nitrate as a CH4 mitigating feed additive on fiber degradation in the rumen can be detected by evaluating diurnal patterns of 13C enrichment of exhaled CO2 (Chapter 3). Feeding nitrate, but not DHA, resulted in a pronounced increase in 13C enrichment of CO2 in the first 3 to 4 h after feeding only. Results support the hypothesis that effects of a feed additive on the rate of fiber degradation in the rumen can be detected by evaluating diurnal patterns of 13C enrichment of CO2. A prerequisite for this detection method is that the main ration components differ in natural 13C enrichment (e.g., C3 and C4 plants), and in content of the nutrients that are expected to be involved in a shift in fermentation (e.g., starch and fiber) or in degradability of a nutrient.

In a combined in vivo and in vitro trial, the adaptation to CH4 mitigating feed additives, viz. an essential oil blend or lauric acid (C12:0), compared with a control diet was first investigated using the in vitro gas production technique during the period that lactating cows were adapting to certain feed additives (Chapter 4). Rumen fluid was collected from each cow at several days relative to the introduction of the additives in the diets and used as inoculum for the gas production experiment with each of the three different substrates that reflected the treatment diets offered to the cows. The feed additives in the donor cow diet had a stronger effect on in vitro gas and CH4 production than the same additives in the incubation substrate. From day 4 onwards, the C12:0 diet persistently reduced gas and CH4 production, total volatile fatty acid concentration, acetate molar proportion and in vitro organic matter degradation, and increased propionate molar proportion. In contrast, in vitro CH4 production was reduced by the essential oils diet on day 8, but not on days 15 and 22. In line with these findings, the molar proportion of propionate in fermentation fluid was higher, and that of acetate smaller, for the essential oils diet than for the control diet on day 8, but not on days 15 and 22. Overall, the data indicate a transient effect of the essential oils on CH4 production, which may indicate microbial adaptation, whereas the CH4 mitigating effect of C12:0 persisted. It is recommended that this phenomenon is considered in the planning of future studies on the mitigation potential of feed additives in vitro.

In a follow-up in vivo study, it was investigated whether the alternate feeding of two CH4 mitigating feed additives with a different mode of action (viz. C12:0 and a blend of essential oils) would result in a persistently lower CH4 production compared to feeding a single additive over a period of 10 weeks. The experiment comprised a pre-treatment period and three two-week measurement periods, with two periods of 2 weeks in between in which CH4 emission was not measured. Cows received either continuously the essential oil blend, or both the essential oil blend and C12:0 following a weekly rotation schedule (Chapter 5). Both CH4 yield and CH4 intensity changed over time, but were not affected by treatment. Methane yield and intensity were significantly lower (12 and 11%, respectively) in period 1 compared with the pre-treatment period, but no significant difference relative to the pre-treatment period was observed in period 3 (numerically 9 and 7% lower, respectively) and in period 5 (numerically 8 and 4% lower, respectively). These results indicate a transient decrease in CH4 yield and intensity in time, but no improvement in extent or persistency of CH4 reduction due to rotational feeding of essential oils and C12:0 in lactating dairy cows. However, there were indications that the concept of rotation may be effective and warrants further investigation.

The additives and concepts tested in this thesis are applied under specific experimental conditions. More mechanistic understanding is required to predict the response of the same additives when supplemented to other basal diets or cows in a different physiological state. Trade-offs in environmental impact, and effects on cow health and performance, and on milk processing parameters and food safety are important aspects to consider in future research on the application of feed additives as CH4 mitigation strategy.

Biomarkers and mechanisms of natural disease resistance in dairy cows
Altena, S.E.C. van - \ 2016
University. Promotor(en): Huub Savelkoul, co-promotor(en): Edwin Tijhaar. - Wageningen : Wageningen University - ISBN 9789462578005 - 158 p.
dairy cows - biomarkers - disease resistance - immunity - antibodies - proteomics - immune response - dendritic cells - immunology - melkkoeien - ziekteresistentie - immuniteit - antilichamen - eiwitexpressieanalyse - immuniteitsreactie - dendritische cellen - immunologie

The aim of this thesis was to define and test biomarkers for disease resistance in dairy cows and to determine the underlying mechanism in natural disease resistance. The health status of the cows is an important issue in dairy farming. Due to the mandatory reduction in the use of antibiotics, alternatives are required to prevent the development and expression of illness in dairy cows. The identification of biomarkers associated with such disease offers the opportunity to adapt the management of cows at risk, and in this way, prevent them from developing overt disease. Previously, natural antibodies (NAbs) in serum and milk were used as candidate biomarkers for natural disease resistance in cows. In this thesis, we continue on the occurrence and mode of action of NAbs and also focus on their source: the B-1 cells. We performed a literature study on the identification and function of B-1 cells in different species and defined the limitations in the current identification of these cells in pigs, sheep and cows (Chapter 2). B-1 cells were described in cows by using widely accepted cell surface markers CD5 and CD11b. However, in literature several findings suggest that these cell surface markers are not unique markers for B-1 identification. The similarities between mice and veterinary animals in foetal B-cell development and antibody production, implies that B-1 cells are present in cows. In chapter 3, we carefully studied new markers to selectively identify B-1 cells in cows. The combination of B-1 cell markers IgM++ and pSYK++ (indicator constitutive intracellular signalling) identifies a distinct cell population with essential B-1 characteristics such as high CD80 expression. In addition, the development of these B-1 cells in calves before colostrum intake and 3 weeks afterwards shows the same kinetics as the development of NAbs represented by IgM antibodies binding to the well-accepted NAb-antigen phosphatidylcholine (PtC). In calves up to half a year of age, it is shown that the production of such NAbs increases from birth and stabilises from 6 weeks onwards. This implies an endogenous NAb production, which follows the same age-related kinetics as can be expected from B-1 cell development. In contrast, the development of total IgM antibody levels in calves shows a bimodal distribution, which is caused by the uptake and breakdown of maternally-derived IgM and simultaneous endogenous production of specific and natural IgM. Chapter 4 describes the role of such NAbs in bovine immunity. NAbs were represented by the binding of IgM to the naïve antigen keyhole limpet hemocyanin (KLH). Cows with high serum NAb levels were shown to have more IgM and IgG antibodies binding to common microbial structures LPS, LTA and PGN, than cows with low serum NAb levels. In addition, they also have more IgM antibodies binding to intact, fixed E. coli and S. Typhimurium bacteria. However, the killing of live E. coli and S. Typhimurium bacteria via antibody-mediated complement killing does not differ between cows with high and low NAb levels. The antibody-mediated complement killing was determined in a newly developed serum bactericidal test. Cows that performed less in the bactericidal test were more likely to develop mastitis in the future. This association was observed for the killing of E. coli and S. Typhimurium and the development of mastitis within the next one year. For S. Typhimurium the association was still present for the cases of mastitis occurring within four years after testing. Alternative biomarkers for disease resistance in cows were defined in chapter 5 by using a contemporary proteomics approach. Milk samples from high and low disease resistant cows were selected from the “Resilient Cattle” (Weerbaar Vee) biobank. Comparing the spectrum of milk proteins of high and low disease-resistant cows showed potential candidate biomarkers that were elevated in the milk of low-resistant cows. Two candidate marker proteins were validated with ELISA in a new and larger group of high- and low-resistant cows. Lactoferrin (LF) levels were significantly increased in milk of low-resistant cows. In addition, LF levels in milk were associated with clinical manifestations of lameness and had a predictive value for subsequent culling.

In conclusion, we found that also in cows NAbs are produced by B-1 cells that can be identified based on the combined expression of cell surface IgM and internal pSYK. In addition, the frequency of these B-1 cells after birth follows a similar kinetics as described before in mice. These NAbs can be more precisely identified based on their PtC binding ability and their functional activity in a bactericidal test. However, the true predictive value of B-1 cells and NAbs for the health status and immunocompetence of dairy cattle remains to be established. Proteomics turned out to be a useful approach for identifying potential new biomarkers for health and disease in milk of cows. Application and further development of their predictive capacity is dependent on the availability of robust, sensitive and quantitative assays. This project was part of the “Resilient Cattle” project providing biological samples and essential data on the health status during respective lactation periods of individual dairy cows. The impact of this research now requires translation into management tools and principles for the individual farmer impacting on the overall health status and economic performance of his herd of dairy cattle.

Antibodies and longevity of dairy cattle : genetic analysis
Klerk, B. de - \ 2016
University. Promotor(en): Johan van Arendonk, co-promotor(en): Jan van der Poel; Bart Ducro. - Wageningen : Wageningen University - ISBN 9789462577589 - 134 p.
dairy cattle - dairy cows - antibodies - longevity - genetic analysis - breeding value - genomes - genetic improvement - animal genetics - melkvee - melkkoeien - antilichamen - gebruiksduur - genetische analyse - fokwaarde - genomen - genetische verbetering - diergenetica

The dairy sector has a big impact on food production for the growing world population and contributes substantially to the world economy. In order to produce food in a sustainable way, dairy cows need to be able to produce milk without problems and as long as possible. Therefore, breeding programs focuses on improvement of important traits for dairy cows. In order to improve desirable traits and obtain genetic gain there is a constant need for optimization of breeding programs and search for useful parameters to include within breeding programs. Over the last several decades, breeding in dairy cattle mainly focused on production and fertility traits, with less emphasis on health traits. Health problems, however, can cause substantial economic losses to the dairy industry. The economic losses, together with the rising awareness of animal welfare, increased herd size, and less attention for individual animals, have led to an increased need to focus more on health traits. Longevity is strongly related to disease resistance, since a more healthy cow will live a longer productive life (longevity). The identification of biomarkers and the detection of genes controlling health and longevity, would not only greatly enhance the understanding of such traits but also offer the opportunity to improve breeding schemes. The objectives of this thesis therefore were 1) to find an easy measurable disease resistance related biomarker in dairy cows, 2) identify the relation between antibodies and longevity, 3) identify genomic regions that are involved with antibody production/expression. In this thesis antibodies are investigated as parameter for longevity. Antibodies might be a novel parameter that enables selection of cows with an improved ability to stay healthy and to remain productive over a longer period of time. In this thesis antibodies bindiging the naive antigen keyhole limpet hemocyanin (KLH) were assumed to be natural antibodies. Antibodies binding bacteria-derived antigens lipoteichoic acid (LTA), lipopolysaccharide (LPS) and peptidoglycan (PGN) were assumed to be specific antibodies. In chapter 2 it was shown that levels of antibodies are heritable (up to h2 = 0.23). Additionally, antibody levels measured in milk and blood are genetically highly correlated (± 0.80) for the two studied isotypes (IgG and IgM). On the other hand, phenotypically, natural antibodies (from both IgG and IgM isotype) measured in milk cannot be interpreted as the same trait (phenotypic correlation = ± 0.40). In chapter 3 and 4 it was shown that levels of antibodies (both natural-and specific antibodies) showed a negative relation with longevity: first lactation cows with low IgM or IgG levels were found to have a longer productive life. When using estimated breeding values for longevity, only a significant relation was found between natural antibody level (IgM binding KLH) and longevity. Lastly chapter 5 reports on a genome-wide-association study (GWAS), to detect genes contributing to genetic variation in natural antibody level. For natural antibody isotype IgG, genomic regions with a significant association were found on chromosome 21 (BTA). These regions included genes have impact on in isotype class switching (from IgM to IgG). The gained knowledge on relations between antibodies and longevity and the gained insight on genes responsible for natural antibodies level make antibodies potential interesting biomarkers for longevity.

Milk fat triacyglycerols : their variabiblity, relations with fatty acids, DGAT1, B polymorphs and melting fractions
Tzompa Sosa, D.A. - \ 2016
University. Promotor(en): Toon van Hooijdonk, co-promotor(en): Hein van Valenberg; G.A. van Aken. - Wageningen : Wageningen University - ISBN 9789462577503 - 122 p.
milk fat - triacylglycerols - fatty acids - composition - polymorphism - dairy cows - cows - crystallization - fat crystallization - melting - calorimetry - maldi-tof - thin layer chromatography - melkvet - triacylglycerolen - vetzuren - samenstelling - polymorfisme - melkkoeien - koeien - kristallisatie - vetkristallisatie - smelten - calorimetrie - dunnelaagchromatografie

Milk fat (MF) triacylglycerol composition varies within a population of dairy cows. The variability of MF triacylglycerols and their structure was partially explained by the fatty acid (FA) composition of the MF, and by DGAT1 K232A polymorphism. The FA C16:0 and C18:1cis-9 play a major role in understanding the changes seen in triacylglycerol profile and structure because they are the most abundant FAs in MF and are negatively correlated. MFs with low ratio C16:0/C18:1cis-9 were decreased in triacylglycerols with 34 and 36 carbons and were increased in triacylglycerols with 52 and 54 carbons. These changes in MF composition greatly affected the crystallization behavior of MF by changing the types of polymorphs formed during its crystallization. MF with low ratio C16:0/C18:1cis-9 formed stable and metastable polymorphs (β and β’, respectively), whereas MF with high ratio C16:0/C18:1cis-9 formed exclusively metastable polymorphs (β’) when the fat was crystallized at 20°C. The changes in MF composition also affected the melting behavior of MF by changing the melting point of the MF fractions.

Mapping and fine-mapping of genetic factors affecting bovine milk composition
Duchemin, S.I. - \ 2016
University. Promotor(en): Johan van Arendonk, co-promotor(en): Henk Bovenhuis; Marleen Visker; Willem F. Fikse. - Wageningen : Wageningen University - ISBN 9789462577305 - 190 p.
dairy cows - dairy cattle - milk composition - milk fat - genetic factors - quantitative trait loci - genomics - genetic mapping - animal genetics - melkkoeien - melkvee - melksamenstelling - melkvet - genetische factoren - loci voor kwantitatief kenmerk - genomica - genetische kartering - diergenetica

Duchemin, S.I. (2016). Mapping and fine-mapping of genetic factors affecting bovine milk composition. Joint PhD thesis, between Swedish University of Agricultural Sciences, Sweden and Wageningen University, the Netherlands

Bovine milk is an important source of nutrients in Western diets. Unraveling the genetic background of bovine milk composition by finding genes associated with milk-fat composition and non-coagulation of milk were the main goals of this thesis. In Chapter 1, a brief description of phenotypes and genotypes used throughout the thesis is given. In Chapter 2, I calculated the genetic parameters for winter and summer milk-fat composition from ~2,000 Holstein-Friesian cows, and concluded that most of the fatty acids (FA) can be treated as genetically the same trait. The main differences between milk-fat composition between winter and summer milk samples are most likely due to differences in diets. In Chapter 3, I performed genome-wide association studies (GWAS) with imputed 777,000 single nucleotide polymorphism (SNP) genotypes. I targeted a quantitative trait locus (QTL) region on Bos taurus autosome (BTA) 17 previously identified with 50,000 SNP genotypes, and identified a region covering 5 mega-base pairs on BTA17 that explained a large proportion of the genetic variation in de novo synthesized milk FA. In Chapter 4, the availability of whole-genome sequences of keys ancestors of our population of cows allowed to fine-mapped BTA17 with imputed sequences. The resolution of the 5 mega base-pairs region substantially improved, which allowed the identification of the LA ribonucleoprotein domain family, member 1B (LARP1B) gene as the most likely candidate gene associated with de novo synthesized milk FA on BTA17. The LARP1B gene has not been associated with milk-fat composition before. In Chapter 5, I explored the genetic background of non-coagulation of bovine milk. I performed a GWAS with 777,000 SNP genotypes in 382 Swedish Red cows, and identified a region covering 7 mega base-pairs on BTA18 strongly associated with non-coagulation of milk. This region was further characterized by means of fine-mapping with imputed sequences. In addition, haplotypes were built, genetically differentiated by means of a phylogenetic tree, and tested in phenotype-genotype association studies. As a result, I identified the vacuolar protein sorting 35 homolog, mRNA (VPS35) gene, as candidate. The VPS35 gene has not been associated to milk composition before. In Chapter 6, the general discussion is presented. I start discussing the challenges with respect to high-density genotypes for gene discovery, and I continue discussing future possibilities to expand gene discovery studies, with which I propose some alternatives to identify causal variants underlying complex traits in cattle.

Sainfoin (Onobrychis viciifolia) : a forgotten crop for dairy cows with future potential
Huyen, Nguyen Thi - \ 2016
University. Promotor(en): Wouter Hendriks, co-promotor(en): Wilbert Pellikaan; Martin Verstegen. - Wageningen : Wageningen University - ISBN 9789462577268 - 160 p.
onobrychis viciifolia - dairy cows - fodder legumes - fodder crops - legume silage - rumen digestion - nutrition physiology - methane production - milk yield - dairy performance - animal nutrition - melkkoeien - voederpeulvruchten - voedergewassen - peulvruchtenkuilvoer - pensvertering - voedingsfysiologie - methaanproductie - melkopbrengst - melkresultaten - diervoeding

Sainfoin (Onobrychis viciifolia): a forgotten crop for dairy cows with future potential


The world population growth and rising incomes are expected to increase the consumption of animal-derived foods such as meat, eggs and milk. However, livestock production should not only be directed towards increasing productivity but should also incorporate environmental, food safety and animal welfare aspects. Therefore, farm businesses have to respond to the high environment impact of their activities, by using low-input systems including the use of forage legumes. Recent studies have demonstrated that forage legumes with moderate levels of condensed tannins (CT) are beneficial for animal nutrition and animal health. Sainfoin (Onobrychis viciifolia Scop.) is a tanniniferous forage legume containing CT that has potential nutritional and health benefits, i.e. preventing bloating, reducing nematode larval establishment, improving nitrogen (N) utilization and reducing greenhouse gas and N emissions (Chapter 1). However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still rather unknown. This thesis investigated the potential of sainfoin in the dairy cow diets and the effect of CT structural properties on rumen fermentation and biohydrogenation (BH).

Chapter 2 reports a study where the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization and methane (CH4) production in dairy cows was investigated. Six rumen cannulated, lactating dairy cows were randomly assigned to either a control (CON) or sainfoin based (SAIN) diet. The CON diet was a mixture of grass silage, corn silage, concentrate and linseed. In the SAIN diet, 50% of the grass silage DM in the CON diet was exchanged by sainfoin silage. Total daily dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) intake did not differ between the two diets. The apparent digestibility of DM, OM, NDF and acid detergent fiber (ADF) were respectively, 5.7, 4.0, 15.7 and 14.8% lower for the SAIN diet. Methane production per kg DM intake was lowest for the SAIN diet and CH4 production as a percentage of gross energy intakes tended to be lower while milk yield was greater for the SAIN diet. Nitrogen intake, N retention and energy retained in body protein were greater for the SAIN than the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results showed that inclusion of sainfoin silage at the expense of grass silage in dairy cow rations reduced CH4 per kg DM intake. Although nutrient digestibility was decreased, sainfoin silage improved milk production and redirected metabolism towards body protein accretion at the expense of body fat.

In Chapter 3, reticular fatty acid (FA) flow and ruminal BH of C18:3n-3 is reported using the reticular sampling technique (Cr-EDTA and Yb-acetate as digesta flow markers) in the lactating cows fed the SAIN and CON diet in Chapter 2. The reticular flows of DM, OM and N were not affected by dietary treatment. However, NDF flow was higher (1.87 vs. 1.40 kg/d) where the cows were fed the SAIN diet. A higher mono-unsaturated FA flow was caused by the higher trans-9-C18:1 and cis-9-C18:1 flow for the SAIN compared to the CON fed cows. The flows of trans-9,trans-12-C18:2 and cis-12,trans-10 C18:2 were higher in the SAIN diet fed cows, but total poly-unsaturated FA flow was not affected by the different diet treatments. The SAIN diet fed cows had a significant lower ruminal BH of cis-9-C18:1 and C18:3n-3, compared to the CON fed cows and tended to a lower ruminal BH in case of cis-9,cis-12-C18:2. These results show that inclusion of sainfoin silage at the expense of grass silage in dairy cow rations reduces ruminal BH of dietary cis-9-C18:1 and C18:3n-3.

The effects of replacing grass silage by sainfoin silage in a TMR on milk production and FA in milk fat of the dairy cows in Chapter 2 is reported in Chapter 4. Milk yield reported in Chapter 4 was highest for the SAIN diet with every kg of OM digested of the SAIN diet resulting, on average, in 0.2 kg more milk production. The SAIN diet fed cows had a higher C18:3n-3 and cis-9,cis-12-C18:2 proportion in milk fat compared to the CON diet fed cows. A higher proportion of total trans-C18:1 was found in the cows fed the SAIN diet. There were no differences in proportion of total saturated and unsaturated FA in milk fat between the two diets. Our results showed that replacing grass silage by sainfoin silage improved milk yield and milk FA profile of dairy cows.

Effects of the structural properties of CT, i.e. average polymer size (or mean degree of polymerization, mDP); percentage of cis flavan-3-ols (%cis) and percentage of prodelphinidins (%PD) in CT extracts on CH4 production and fermentation characteristics of rumen fluid using an in vitro gas production technique was investigated in Chapter 5. Extracts of CT from eight plants; black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers were extracted, in order to obtain CT with a wide range in mDP, %PD and %cis. All CT extracts reduced CH4 concentration, decreased the maximum rate of fermentation for CH4 production and rate of substrate degradation. The correlation between CT structure on the one hand and CH4 production and fermentation characteristics on the other hand showed that the %PD within CT had the largest effect on fermentation characteristics, followed by mDP and %cis.

Chapter 6 reports results of an in vitro study to investigate the effects of the structural properties CT (mDP, %cis and %PD) on rumen fermentation and BH end-products. The total volatile FA (VFA), ammonia concentration and the proportion of branched chain VFA was reduced in all CT extracts, compared to the control. The proportion of cis-9-C18:1; cis-9,cis-12-C18:2; cis-9,cis-12,cis-15-C18:3 were numerically higher in all CT sources, while the proportion of C18:0 and fractional rate of BH of C18:3n-3 were numerically lower in all CT sources, compared to the control. The correlation between CT structural properties on the one hand and fermentation and BH end-products on the other hand showed that the CT with a high %PD and smaller mDP had the largest effect on fermentation end-products. However, mDP was found to be the most important factor affecting rumen BH.

Chapter 7 provides a general synthesis on the major findings of the studies presented in the preceding chapters. In addition, results are reported of a further in vitro as well as an in situ study in which I investigated the mechanisms of CT action in the rumen, in the post-rumen compartments and digestive tract. In the in situ study, fresh sainfoin (Esparcette) was incubated in the rumen and in the abomasum before digested during passage through the digestive tract. For the in vitro study, sainfoin (Ambra) was incubated with rumen fluid buffer for 1, 2, 4, 8, 12, 24 hours. After incubation in situ and in vitro, the incubated material was analyzed for tannin content by butanol-HCl assay. The results showed that the soluble CT dramatically reduced upon introduction in the digestive tract. Additional analyses showed that CT had bound to the fiber and protein (diet and microbes) fractions in the digestive tract.

The present work showed that sainfoin silage can be used in dairy cow rations to improve milk production and N utilization and reduce CH4 emissions per kg DM intake. Moreover, sainfoin silage, when replacing part of the grass silage in a TMR of dairy cows, increases ruminal unsaturated FA flow into the reticulum and reduces ruminal BH of dietary cis-9-C18:1 and C18:3n-3. Cows fed sainfoin silage at the expense of grass silage in a TMR increase the proportion of unsaturated FA in milk fat. In terms of condensed tannin structure, mDP and %PD appear to be the most important properties of CT that affect fermentation and BH end-products. Condensed tannins with a mDP ranging from 5 to 10 monomeric units and a %PD > 70.0% seem to have the highest biological activity in the rumen.

Sensor voorspelt grasopname : koeien nemen meer gras op uit het weiland dan berekend met de vem-dekking
Reenen, Kees van; Zom, Ronald ; Galama, Paul - \ 2016
dairy cows - dairy farming - sensors - grazing - grasses - feed intake - pastures - agricultural research
Fokwaarde voeropname op volle kracht : vanaf komende Interbull-draai is de fokwaarde voeropname voor elke stier beschikbaar in Nederland en Vlaanderen
Haas, Yvette de; Veerkamp, Roel - \ 2016
cattle husbandry - bulls - milk production - dairy cows - feed intake - farm results - intensive livestock farming - breeding value - flanders - netherlands - australia
Measurement methods to assess methane production of individual dairy cows in a barn
Wu, L. - \ 2016
University. Promotor(en): Peter Groot Koerkamp, co-promotor(en): Nico Ogink. - Wageningen : Wageningen University - ISBN 9789462577312 - 190 p.
dairy cows - cows - methane production - barns - measurement techniques - modeling - breath - uncertainty analysis - greenhouse gases - cubicles - melkkoeien - koeien - methaanproductie - landbouwschuren - meettechnieken - modelleren - adem - onzekerheidsanalyse - broeikasgassen - ligboxen


Mitigation of methane production from dairy cows is critical to reduce the dairy industry’s contribution to the production of greenhouse gases. None of current used methane measurement methods are flawless and application of the methods is limited to assess the effects of methane mitigation methods under practical conditions. The main objective of this thesis is to design, test, and validate methods to determine or rank the methane production of individual dairy cows at farm house level.

As a start, I evaluated merits and drawbacks of existing methane measurement methods and discussed against 14 requirements of methane measurement methods to assess methane mitigation strategies. This review study revealed that none of existing methods meet all requirements, and pointed out that sampling of breath air during the lying period of cows in cubicles could be a practical direction to measure methane production of individual cows under farm conditions. Therefore, we first assessed methane concentration levels and variations in time, and around cubicles, explored effects of barn and management factors on them, and assessed the effect of the variation of the background methane concentrations on assessing methane production of individual dairy cows in cubicles. Then, we designed and constructed an artificial reference cow (ARC) that mimics the methane production of real cows with known pre-set methane production rates and dynamics of eructations. With the acquired background information and the developed ARC, we assessed the uncertainty of a breath methane concentration (BMC) method in a feeder and developed a cubicle hood sampler (CHS) that measures methane fluxes from lying cows in cubicles. The observed uncertainty related to random errors of the BMC method can be overcome by sufficient numbers of repetitions. However identified uncertainty with a systematic nature, related to inconsistent relation between concentration and production rate, cannot be compensated by repeated measurements and requires further investigation into the widely used BMC method before it can be used with confidence. Compared to the BMC method, the developed CHS is not subject to such systematic effects and allows prolonged measurement periods. Performance test under field conditions showed that the designed CHS accurately measured methane fluxes provided by the ARC.

Overall, in this thesis I assessed the measurement error of current three methane measurement principles (flux, breath concentration & tracer gas), provided information to limit the measurement variation, and assessed the availability to determine or rank the methane production of individual dairy cows at farm house level. The newly developed ARC can be used as a known reference source to calibrate and develop practical methane measurement methods, and the CHS is sufficiently accurate to measure methane production of individual cows at farm house level.

Opties voor beperking fosfaatproductie van de Nederlandse melkveestapel: dierrechten versus fosfaatrechten : een verkennende analyse
Blokland, P.W. ; Luesink, H.H. ; Jongeneel, R.A. ; Daatselaar, C.H.G. ; Koeijer, T.J. de - \ 2015
LEI Wageningen UR (Nota / LEI Wageningen UR 2015-151) - 27 p.
melkveehouderij - fosformeststoffen - bemesting - duurzaamheid (sustainability) - melkproductie - quota - melkkoeien - nederland - dairy farming - phosphorus fertilizers - fertilizer application - sustainability - milk production - quotas - dairy cows - netherlands
Deze nota beschrijft de voor- en nadelen van het eventueel invoeren van dierrechten of fosfaatrechten in de Nederlandse melkveehouderij. Ook de effecten van de invoering van dierrechten dan wel fosfaatrechten op de doelen van de Duurzame Zuivelketen zijn verkend. Daarnaast worden verschillende melkveefosfaatproductieniveaus vergeleken met het sectorale melkveefosfaatplafond
van 84,9 mln. kg fosfaat. De productieniveaus onderscheiden zich van elkaar door het gebruik van verschillende referentiemomenten van dieraantallen en door verschillende excretienormen. Aanvullend is een analyse uitgevoerd naar de fosfaatexcretie per kg melkquotum voor melkkoeien
Check title to add to marked list
<< previous | next >>

Show 20 50 100 records per page

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.