Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 5 / 5

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: wurpublikatie/titelbeschrijving/classificatie/trefwoord/cab/engels==microfiltration
Check title to add to marked list
Druppelen op het randje
Schroen, Karin - \ 2013
food technology - microanalysis - microtechniques - emulsions - microfiltration - droplets
Covalent functionalization of silicon nitride surfaces for anti-biofouling and bioselective capture
Nguyen, A.T. - \ 2011
University. Promotor(en): Cees van Rijn; Han Zuilhof, co-promotor(en): Jos Paulusse. - [s.l.] : S.n. - ISBN 9789461730084 - 141
microfiltratie - ongewenste aangroei van levende (micro)organismen - aangroeiwerende middelen - oppervlaktechemie - microfiltration - biofouling - antifouling agents - surface chemistry

Microsieves – microengineered membranes – have been introduced in microfiltration technology as a new generation of inorganic membranes. The thin membranes are made of silicon nitride (SixN4), which gives the membranes outstanding features, such as chemical inertness and high mechanical strength. Microsieves have very well-defined pore size and pore shape, with an extremely homogeneous size distribution and high porosity. As a result, high-flux performance and excellent selectivity may be achieved. However, biofouling issues exert limitations on the application of microsieves in filtration and diagnostics. Surface functionalization was found to be a feasible way to minimize biofouling, but also to achieve biorecognition in microbiological applications. The aim of this thesis is to improve microsieve performance in biological applications by means of surface functionalization with organic coatings for protein repellence and selective capture of microorganisms.
In this thesis, SixN4 surfaces were functionalized with organic monolayers via stable Si C and N-C linkages. Coatings to render SixN4 surfaces protein repellent were studied in depth by two approaches: grafting of ethylene oxide monolayers onto the surface (Chapter 2); and grafting of zwitterionic polymers from the surface (Chapter 3). UV induced surface modification with oligo(ethylene oxide) chains with three (EO3) and six (EO6) units and the detailed characterization of these modified surfaces are described in Chapter 2. Successful attachment of EO3 and EO6 on SixN4 surfaces was achieved. The modified surfaces exhibit excellent protein repellence in bovine serum albumin (BSA) solution (~ 94%), but only moderate (~ 80%) protein repulsion was observed in fibrinogen (FIB) solution. This observation motivated the study towards grafting zwitterionic polymer brushes from SixN4 surfaces for improved protein repellence. A new method to grow zwitterionic polymers from monolayers containing tertiary bromides, via atom transfer radical polymerization (ATRP) was developed. The zwitterionic polymer coated surfaces showed excellent protein repellence in FIB solution (> 99%), while exhibiting very stable performance in PBS during one week, i.e., unchanged thickness, no hydrolysis of the polymers occurred and protein repellence in FIB solution remained constant.
The use of microsieves as detection platform for microorganisms was explored in Chapter 4. Microorganisms can be caught by microsieves whose pore sizes are smaller than the microorganisms while allowing an easy flow-through of other components. However, detection capacity of microsieves is severely hampered by fouling issues. To avoid this problem, the use of microsieves with pore sizes larger than the microorganisms, in combination with immobilized antibodies was investigated in Chapter 4. Anti Salmonella antibodies were immobilized onto epoxide monolayers on microsieve surfaces by reaction with the primary amines present in the antibody. The antibody-coated microsieves showed excellent detection of Salmonella with high sensitivity and selectivity, significantly improving detection efficiency in crude biological samples, and reducing analysis times.
The capture efficiency of Salmonella in milk samples was, however, found to be lower than that achieved in buffered solution. Most likely, this is due to nonspecific adsorption of milk proteins on the antibody-coated microsieves. In addition, the use of a blocking solution before incubation with microorganism solution remained an essential step in order to avoid the occurrence of interfering background fluorescence. In order to minimize these problems, the incorporation of antibodies on top of protein-repellent zwitterionic polymers coated on SixN4 surfaces was studied in Chapter 5. Anti-Salmonella antibodies were immobilized on zwitterionic polymer brushes coated SixN4 surfaces through the bromide moieties retained at the end of the polymer chain after ATRP. Antibody-functionalized zwitterionic polymers adsorbed only minimal amounts of FIB, indicating excellent protein repellence of the modified surfaces. Moreover, anti-Salmonella antibodies immobilized onto zwitterionic surfaces exhibit highly selective capture and improved sensitivity, as compared to antibodies on epoxide coated surfaces. This achievement offers a new approach that enables highly sensitive and selective detection of microorganism, while minimizing nonspecific adsorption of proteins that are not of interest.
In Chapter 6, an overview is given of the most important findings presented in the thesis. Recommendations, as well as additional ideas on how to bring this research into industrial application are discussed.

Effective use of enzyme microreactors : thermal, kinetic and ethical guidelines
Swarts, J.W. - \ 2009
University. Promotor(en): Remko Boom; Michiel Korthals, co-promotor(en): Anja Janssen. - [S.l. : S.n. - ISBN 9789085853732 - 146
bioreactoren - enzymen - enzymactiviteit - microfiltratie - temperatuur - vloeistofmechanica - industriële enzymen - microtechnieken - microarrays - bioreactors - enzymes - enzyme activity - microfiltration - temperature - fluid mechanics - industrial enzymes - microtechniques
Microreactor technology is reported to have many benefits over regular chemical methods. Due to the small dimensions over which temperature and concentration gradients can exist, mass and heat transfer can be very quick. This could minimize the time needed for heating and mixing, due to a reduction in diffusion limitation. Furthermore, a very low fluid to chip volume ratio could facilitate a very stable fluid temperature.

The goal of this thesis research was to investigate the effect of the use of microreactors on enzyme kinetics and the thermal behaviour of fluids inside the chip. First, the effect of the design and use of a microsystem on the fluid temperature inside the microfluidic chip was investigated experimentally and with computer models. A stable and predictable temperature is of great importance for running (enzymatic) processes in a microchip. Next, we used model enzyme reactions to investigate whether the enzyme kinetics were different on micro and bench scale, and when diffusion would play a role. Furthermore, some social and ethical aspects of microreactor technology applications were studied.

To ensure a stable and predictable temperature of the fluids inside the microreactor, the microsystem should be properly designed and used. To test these two aspects, we investigated the effect of practical use (chapter 2) and design parameters (chapter 3) on this fluid temperature. The micro system used in this research consisted of a PEEK chipholder, a relatively small heater, a glass microchip, and surrounding air. We conducted experiments and used computational fluid dynamics models to understand the effect of all varied parameters. In the design of the system, the chipholder shape and material (with its density, specific heat, and thermal conductivity) dominated the temperature of the fluid inside the chip. A temperature gradient as large as 40°C was observed over the length of the chip. This temperature profile at fluid level can be changed by adapting the geometry and material of the chipholder. The results show that a uniform temperature is highly dependent on the correct design of the integrated system of chip, chipholder, and heater. The practical use of the chip with moderate air flow over the chip and moderate fluid flow rates through the channel had no effect on the fluid temperature. A well designed micro system can therefore be considered thermally robust under moderate processing conditions.

The microsystem from chapters 2 and 3 was used for enzyme reactions on micro scale. The kinetic parameters of a lipase catalyzed esterification reaction (chapter 4) and a β-galactosidase catalyzed hydrolysis reaction (chapter 5) on this micro scale were the same as those found on bench scale. Kinetic and thermal (in-)activation results obtained on micro scale can be used for large scale processing. This can bring down optimization costs by reducing the required amount of enzyme and chemicals.

Next, we found that at residence times below a few seconds, diffusion effects limited the reaction rate and therefore reduced the conversion per volume of enzyme microreactor. This effect of diffusion on the conversion increased quadratically with channel width, increased with enzyme concentration, and decreased with substrate concentration. When an enzyme microreactor system should be run efficiently, these factors should be explored to avoid diffusion limitation and subsequent reduced volumetric productivity.

With microreactor technology reaching maturity, a wider application of the technology could be imagined. With increasing application the impact it will have on society will also increase. In chapter 6, three examples of microreactor technology applications in nutrition, in medicine, and in energy carrier supply were investigated. The benefits and costs, and their distribution were discussed for these examples. Furthermore, possible strategies of communication surrounding a public introduction of such a novel technology were considered. The applications proposed in this chapter were only three out of an infinite number of possibilities. However, the discussion of these examples can be used as a framework for discussing future applications as they might be developed in the future. A societal backlash as with the GMO-scare in 1990s, can be avoided when the relevant issues are communicated appropriately and timely. This could improve the chances of success of this technology in the market.

In this thesis we have shown that microreactors can be a useful tool for reaction engineering. Their use could reduce the required amount of enzyme and chemicals for optimization. Furthermore, they can be used to study processes with a very short residence time. To use microreactor technology effectively, one does have to consider whether the scale is appropriate, and whether that the system, including chipholder, interfaces to the outer world and thermal actuators, is properly designed and used.

Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications
Rosso, M. - \ 2009
University. Promotor(en): Han Zuilhof; Remko Boom, co-promotor(en): Karin Schroen. - [S.l. : S.n. - ISBN 9789085853794 - 221
organische verbindingen - unimoleculaire films - microfiltratie - nanotechnologie - oppervlaktechemie - oppervlakteverschijnselen - organic compounds - unimolecular films - microfiltration - nanotechnology - surface chemistry - surface phenomena
Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated membranes-“microsieves”) or for the coating of the exposed surfaces of sensors (field-effect transistors, waveguide optical detectors). To a more limited extent, silicon carbide (SiC) can find similar applications, and this material also starts to be more and more applied in coating and sensor technologies.
In all these applications, control over the surface properties of inorganic materials is crucial, for example to avoid blockage of membranes during filtration, or to provide sensor surfaces with specific (bio-)recognition properties. In this thesis, a variety of methods is developed to obtain and study robust functional coatings on SixN4 and SiC. These enable a whole new range of applications involving biocompatible and bio-specific surfaces, while retaining the bulk mechanical, structural, electrical or optical properties of the inorganic substrates.
Chapter 2 and 3 of the thesis give an overview of the great potential of covalent organic monolayers: Chapter 2 presents the formation of alkylthiol, alkylsilane and alkene monolayers, as well as a number of applications in biocompatible surfaces, micro- and nanopatterning of surfaces and sensing. The emphasis of this review chapter is put on the possible combinations of the bulk properties of inorganic materials (electrical, optical, structural) and the surface properties of organic monolayers (wettability, biospecificity, biorepellence). Chapter 3 is focused on biorepellent surfaces in the field of filtration with microfabricated membranes. Indeed, silicon nitride microsieves, despite their high permeability and structural homogeneity, are prone to pore blocking, when submitted to biological solutions. The chapter gives a review of the available surface modification techniques involving organic coatings that can minimize or even prevent this surface contamination. These coatings involve highly hydrophilic oligomers and polymers, which have been widely explored for organic surfaces. Covalent organic monolayers formed onto inorganic surfaces can extend the applications of these biorepellent coatings to microdevices like SixN4 microsieves (as also discussed in Chapters 7 and 8)
Chapter 4 and 5 present the thermal functionalization with highly stable alkene-based organic monolayers of the surfaces of silicon-rich silicon nitride (Chapter 4) and silicon carbide (Chapter 5). This work was motivated by the substantial knowledge of similar monolayer formation on silicon surfaces1,2 and the initial success of simple functionalizations on silicon nitride.3 The strong covalent attachment of the coating molecules with the substrates makes the obtained hybrid structures much more resistant to chemical degradation than other types of monolayers on these substrates. The reaction proceeds via attachment of the terminal double bond of alkenes with the surface groups (Si-H in the case of silicon nitride surfaces or –OH for silicon carbide surfaces). Besides methyl-terminated surfaces, functional coatings can be obtained by the use of bi-functionalized alkenes (Figure 1), also allowing further surface reactions and the attachment of bio-recognition elements, through covalent attachment of diverse chemical (carboxylic acid, amine) or biological (oligo-peptides, protein) moieties.

Figure 1. Modification of SiC and Si¬xN4 surfaces with alkyl monolayers
Chapter 6 describes a modification of this method, where UV irradiation is used instead of heat to initiate the modification of both silicon nitride and silicon carbide. For both materials, this method allows the grafting of heat-sensitive compounds, needs less starting material (using only a liquid film) and provides monolayers with higher quality (as e.g. indicated by grafting density and stability) and higher reproducibility. Here again the attachment of diverse functionalities is possible, via formation of activated esters. After hydrolysis and activation of such grafted ester, amines can be attached in high yield (> 80 %), as demonstrated using X-ray photoelectron spectroscopy (XPS). Besides the homogeneous modification of plain surfaces, this method also opens the way to surface patterning of silicon nitride and silicon carbide and the modification of mechanically sensitive microfabricated devices.
In Chapters 4 to 6, the chemical functionalizations are studied using X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), atomic force microscopy (AFM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and static water contact angles. Si-C bonds are formed preferentially upon reaction of SixN4 surfaces with alkenes, similarly to what is reported for pure silicon surfaces, albeit that no measurement could totally exclude the presence of C-N bonds. The wet etching of SiC yields hydroxyl-terminated surfaces, and an IRRAS study reveals the attachment of alkenes via a Markovnikov-type addition (O-C bond formed on the second carbon of the double bond). The stability of these monolayers is reported in acidic and basic conditions, and it was shown that UV initiation yields even more stable monolayers, probably due to some cross-linking of the alkyl chains.
Chapter 7 explores the biorepellence of UV-initiated monolayers on silicon nitride surfaces Oligomers of ethylene glycols (3 or 6 units: methoxy-tri(ethylene oxide) undec-1-ene (CH3O(CH2CH2O)3(CH2)9CH=CH2; EO3, and methoxy-hexa(ethylene oxide) undec-1-ene (CH3O(CH2CH2O)6(CH2)9CH=CH2; EO6) are attached on the silicon nitride surfaces. The adsorption of two proteins, bovine serum albumin (BSA) and fibrinogen is used to test the biorepellence of the monolayers, in comparison with bare oxidized silicon nitride. Both proteins adsorb readily onto bare SixN4 surfaces, with adsorbed amounts of 1.25 and 2.7 mg.m-2 for BSA and fibrinogen, respectively, of which more than 80 % is irreversibly bound. In contrast to this, when oligomers are attached to the surface, this adsorption decreases to under the detection limit of the method used for this experiment (optical reflectometry). The ex situ study of surfaces with AFM and water contact angles also indicates that some of the monolayers completely prevent the adsorption of proteins.

Figure 2. Biorepellent behavior of oligoethylene oxide coated SixN4 surfaces
Chapter 8 describes the applications of the biorepellent coatings used in Chapter 7 (EO6) to silicon nitride microsieves, in order to improve the filtration of biological solutions and liquid food products. The EO6 coatings are successfully formed on microfabricated membranes with pore diameters of 0.45 micrometer, using the UV-initiated monolayer formation described in Chapter 6. This work shows that these coatings could be applied without loss of permeability due to wettability or pore blocking. Moreover, AFM showed that these coatings significantly decrease the adsorption of proteins on the surface between the pores.
Chapter 9 describes an alternative functionalization technique for inorganic surfaces, namely the use of plasma oxidation of alkyl monolayers to reproducibly form aldehydes (among other oxidized species) onto surfaces. The method described here for silicon and silicon nitride surfaces, is developed for the functionalization of sensitive devices and substrates. The formation of methyl-terminated alkyl monolayers from linear terminal alkenes is one of the easiest to perform, since linear monofunctional alkenes are readily available, their purification is easy (distillation) and their grafting conditions are very flexible (liquid state, heat-resistant, UV-resistant > 250 nm). Once these stable monolayers are formed, a short plasma treatment (0.5 to 2 s) is able to form oxidized functionalities within the top few angstroms of the surface, while the underlying alkyl chains retain their initial packing and insulation properties of the inorganic substrate. The grafting of gold nanoparticles shows that micron-sized patterns can be formed using a soft contact mask to protect a limited area of the monolayer. Alternatively, the aldehydes can be used to attach biotin and avidin onto SixN4 surfaces. The selective adsorption of biotinylated BSA onto the avidin-modified surfaces shows that the plasma treatment of methyl-terminated monolayers is a fast and efficient method to produce surfaces displaying high specific biochemical interactions.
In the chapter 10, some of the most striking effects that are described in the previous chapters are put into a wider perspective. Especially the formation and stability of monolayers is discussed, also in relation to biofunctionalization, biorepellence, and opportunities for surface engineering are proposed.
Particle separation and fractionation by microfiltration
Kromkamp, J. - \ 2005
University. Promotor(en): Remko Boom, co-promotor(en): Karin Schroen; Ruud van der Sman. - [S.l.] : s.n. - ISBN 9085042399 - 184
microfiltratie - membranen - deeltjes - deeltjesgrootte - simulatiemodellen - computersimulatie - microfiltration - membranes - particles - particle size - simulation models - computer simulation - cum laude
cum laude graduation (with distinction) For the production of present-day dairy products, raw milk is often considered an entity. However, a large quality improvement could be reached if selected constituents were available. In order to achieve this, milk will have to be fractionated prior to use in dairy products. Microfiltration is an important technique for the fractionation of milk; the pore size typically being in the order of micrometers. However, due to insufficient separation caused by blockage of the filter, the potential of microfiltration is still hardly used. This instigated the Ph.D. research project of Janneke Kromkamp which aims at using microfiltration for fractionation to its fullest potential. The interaction between the different microparticles in milk and the surrounding liquid were studied at a fundamental level by means of computer simulation techniques. By coupling this information to observations on the microfiltration of milk, important new insights were obtained which can substantially improve the fractionation process. Paradoxically enough, the liquid flow was better able to fractionate particles than the membrane alone. Because the particles organise in the liquid flow, the large ones moving to the centre of the channel, the smaller ones can be separated easily. Herewith, membrane blockage, which was the biggest challenge in this thesis, is prevented. An additional advantage is that the fractionation process can be completely controlled by easily controllable process parameters. The high-quality dairy products mentioned earlier have now come within reach.
Check title to add to marked list

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.