Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Records 1 - 20 / 105

  • help
  • print

    Print search results

  • export

    Export search results

  • alert
    We will mail you new results for this query: wurpublikatie/titelbeschrijving/classificatie/trefwoord/cab/engels==recycling
Check title to add to marked list
Groene Mineralen Centrale : Duurzame productie van mineralen, biogas en schoon water
Schoumans, O.F. ; Regelink, I.C. ; Ehlert, P.A.I. - \ 2018
Wageningen : Wageningen University & Research
TKI
SYSTEMIC Newsletter, issue 1
Schoumans, O.F. ; Regelink, I.C. ; Ehlert, P.A.I. - \ 2018
Wageningen : Wageningen University & Research - 3 p.
EU H2020
‘We’ve still got a way to go’
Thoden van Velzen, Ulphard ; Molenveld, Karin - \ 2018
recycling - biobased economy - polymers - residual streams - organic wastes - biofuels - bioenergy - renewable energy
Er is nog veel te winnen
Thoden van Velzen, Ulphard ; Molenveld, Karin ; Hugenholtz, Jeroen - \ 2018
biobased economy - recycling - biobased materials - biomass - residual streams - agricultural wastes - biofuels - bioenergy

Willen we ons huishoudelijk afval optimaal benutten, dan moeten we de grondstoffen erin efficiënter scheiden en terugwinnen. 'We zijn nog ver verwijderd van het ideale, circulaire beeld.'

Methodology for the case studies
Smits, M.J.W. ; Woltjer, G.B. - \ 2017
EU (Circular impacts ) - 19 p.
economics - cycling - projects - renewable energy - recycling - sustainability - durability - politics - policy - environment - economie - kringlopen - projecten - hernieuwbare energie - duurzaamheid (sustainability) - duurzaamheid (durability) - politiek - beleid - milieu
This document is about the methodology and selection of the case studies. It is meant as a guideline for the case studies, and together with the other reports in this work package can be a source of inform ation for policy officers, interest groups and researchers evaluating or performing impact assessments of circular economy policies or specific circular economy projects. The methodology was developed to ensure that the case studies focus on the overall im pacts of the circular economy. The frame of the methodology is a s tep - by - step approach, which will be described in section s 3 and 4 of this document. In section 2 we describe the selection of the case studies.
Recyclingopties voor PET schalen
Thoden van Velzen, Ulphard - \ 2017
Wageningen : Wageningen Food & Biobased Research (Wageningen Food & Biobased Research rapport 1761) - 19
recycling - verpakkingsmaterialen - kunststoffen - afvalverwijdering - platte bakken - huisvuilverwijdering - packaging materials - plastics - waste disposal - trays - municipal refuse disposal
KringloopToets: sluiten van de nutriëntenkringloop op het niveau van Noordwest-Europa : inhoudelijke en procesmatige rapportage
Leenstra, Ferry ; Vellinga, Theun ; Bremmer, Bart - \ 2017
Wageningen : Wageningen Livestock Research (Wageningen Livestock Research rapport 1019) - 47
nutriëntenstromen - voer - diervoedering - diervoeding - recycling - noordwest-europa - nutrient flows - feeds - animal feeding - animal nutrition - northwestern europe
The Nutrient Cycle Assessment aims at visualizing nutrient flows. In policy documents closing of nutrient cycles at the level of North Western Europe is often mentioned. Province North Brabant, farmers organisation ZLTO and NGO BMF examined together with Wageningen University & Research the effects of closing the borders of North West Europe (Benelux, France, Germany, UK) for feed ingredients and animal products. The results of this exercise were discussed in a separate session with representatives of the feed industry. This report describes the conclusions of the analysis and the lessons that can be learned from this exercise for future work with the Nutrient Cycle Assessment.
Lift up of Lowlands : beneficial use of dredged sediments to reverse land subsidence
Figueiredo Oliveira, Bruna Raquel - \ 2017
Wageningen University. Promotor(en): Huub Rijnaarts, co-promotor(en): Tim Grotenhuis. - Wageningen : Wageningen University - ISBN 9789462578838 - 229
dredgings - dredging - sedimentation - soil - sediment - subsidence - recycling - environmental engineering - bagger - baggeren - sedimentatie - bodem - bodemdaling - milieutechniek

In this thesis, the beneficial use of dredged sediments to reverse land subsidence in lowlands and delta areas is explored. The major constraints for beneficial use of sediments are the contaminant concentrations, and the proper managing of supply and demand of sediments (Chapter 1).

When sediments are transferred from waterways to upland conditions, a series of processes take place that transform the waterlogged sediments into aerated soils, a process known as ripening. To understand the relation between the sediments and the soils formed, physical/chemical and biological processes were studied at three scales: laboratory scale, mesoscale, and field scale. The knowledge obtained with these experiments can provide guidelines to effectively use dredged sediments to reverse land subsidence.

In the laboratory experiments, the environmental conditions were controlled, leading to constant water content and optimal oxygen concentration for biological processes. In the mesoscale experiment, the environmental parameters such as wind, precipitation and temperature, were not controlled as the 1 m3 containers used for these experiments were placed outside, in open air conditions. Still, the water level could be monitored and controlled, and the subsidence of the dredged sediment could be monitored. In the field experiment, the environmental and filling conditions could not be controlled but the changes occurring in the deposit were monitored.

In the first laboratory experiment (Chapter 2) the behaviour of dredged sediments with varying particle size distribution and organic matter content was studied. The dredged sediments were dewatered using suction chambers and then submitted to biochemical ripening during 141 days. The five types of dredged sediments had similar overall behaviour. The most significant observation was that most volume lost during dewatering and biochemical ripening was due to shrinkage and not to organic matter mineralization. Furthermore, the type of organic matter changed in the direction of humification, i.e., more stable compounds were formed. The soils formed from biochemical ripening of dredged sediments had very stable aggregates and the load-bearing capacity was enough to sustain cattle and tractors.

The second laboratory experiment (Chapter 3) was designed to investigate the influence of mixing compost and the solid fraction of swine manure (low in nutrients) with dredged sediments on dewatering and biochemical ripening. When the supply of dredged sediments is too low to compensate for land subsidence, bio-wastes, such as compost and manure, can be mixed with the sediments to reverse land subsidence. The results of this experiment confirm that most volume lost during ripening was due to shrinkage and not due to organic matter mineralization. Adding compost or the solid fraction of manure to the dredged sediments enhances the changes in the type of organic matter and CO2 production, i.e., the addition results in increased rates of organic matter mineralization which is described in the literature as the priming effect. In addition, the undrained shear strength of the mixtures of sediments with compost or manure was three times higher than the measured values for the sediments alone, meaning that organic amendments will improve the characteristics of the soil formed from ripening of sediments.

The mesoscale experiment (Chapter 4) was performed during 400 days in 1m3 containers which allowed to control the water level. Two scenarios were tested: upland deposits in which the sediments are allowed to dry; and underwater deposits in which the water level is always 2 cm above the sediments. It was expected that the upland deposit conditions would lead to a higher subsidence than the underwater conditions. However, subsidence of the sediments was very similar for the two scenarios. Also in these experiments it was observed that most subsidence could be attributed to shrinkage and not organic matter mineralization, and the type of organic matter changed in the direction of humification. Furthermore, the water balance indicated that evapotranspiration results in higher loss of water than drainage. Still, in this case the undrained shear strength after 400 days of experiment was not enough to sustain cattle or tractors even though it increased with time.

The monitored field scale upland deposit of dredged sediments (Chapter 5) is located in the Wormer- en Jisperveld area – North Holland, the Netherlands. The deposit was filled in two stages reaching a maximum height of sediments of 195 cm. After 17 months of monitoring, the subsidence of the sediments was 119 cm to which an extra subsidence of 19.5 cm of the underlying soil due to the overburden pressure was added. The results observed in the upland deposit are in line with the laboratory and mesoscale results since subsidence could also be attributed to shrinkage and no significant changes in the organic matter content were observed. However, in the case of the upland deposit, the type of organic matter changed in the direction of humification during the first 8 months (March to November), then stabilized during 7 months (November to June), and changed in the direction of mineralization afterwards.

The outcomes of this research indicate that dredged sediments have the potential to reverse land subsidence. This statement is supported by the consistent results showing that the decrease in volume of dredged sediments is caused by shrinkage and not to organic matter mineralization as traditionally reported (Chapters 2, 3, 4, and 5).

In addition, in places where composted and stable bio-wastes are available, these can be added to dredged sediments to further reverse land subsidence. Still, in this case special attention should be given to the potential priming effect (Chapter 3).

Finally it is recommended to adapt the current practices of disposal of dredged sediments in upland deposits, since 19.5 cm of subsidence observed for the underlying soil in the upland deposit (Chapter 5), was caused by the overburden pressure of the dredged sediment. From the point of view of avoiding/reversing land subsidence it is recommended to spread thin layers (in the order of cm) of sediments over the land, although this might lead to an increase in the time and costs for the stakeholders involved in dredging and in managing the water boards.

How to achieve resource use efficiency in integrated food and biobased value chains : Vision paper
Annevelink, E. ; Gogh, J.B. van; Bartels, Paul ; Broeze, J. ; Dam, J.E.G. van; Groot, Jim ; Koenderink, N.J.J.P. ; Oever, M.J.A. van den; Snels, J.C.M.A. ; Top, J.L. ; Willems, D.J.M. - \ 2016
Wageningen : Wageningen UR - Food & Biobased Research - 24 p.
biobased economy - resource utilization - value chain analysis - bioenergy - biomass - recycling - sustainable development - economic development - food production - hulpbronnengebruik - waardeketenanalyse - bio-energie - biomassa - duurzame ontwikkeling - economische ontwikkeling - voedselproductie
This publication contains a vision, formulated by research experts in food and biobased production, on how to achieve increased efficient and effective use of available resources during the production and (re)processing of biomass for food and biobased products, feed and energy. This paper briefly elaborates on the transition to a sustainable bio-economy (see graph 1), focusing on the needs and requirements from a value chain perspective.
Circular Solutions : Part IV From Waste to Resource
Annevelink, E. ; Bos, H.L. ; Meesters, K.P.H. ; Oever, M.J.A. van den; Haas, W. de; Kuikman, P.J. ; Rietra, R.P.J.J. ; Sikirica, N. - \ 2016
TO2 Federatie - 65 p.
biobased economy - waste utilization - recycling - refuse - waste management - innovations - afvalhergebruik - vuilnis - afvalbeheer - innovaties
The fifth part of this report on Circular Solutions is about the circular principle From Waste to Resource. The purpose of this study is to select promising options for the implementation of this circular principle and to elaborate these options further.
Feed sources for livestock : recycling towards a green planet
Zanten, H.H.E. van - \ 2016
Wageningen University. Promotor(en): Imke de Boer, co-promotor(en): Paul Bikker; Bastiaan Meerburg. - Wageningen : Wageningen University - ISBN 9789462578050 - 251 p.
cum laude - livestock - livestock feeding - feeds - resources - food wastes - leftovers - recycling - greenhouse gases - environmental impact - innovations - sustainable animal husbandry - animal production - vee - veevoeding - voer - hulpbronnen - voedselafval - etensresten - broeikasgassen - milieueffect - innovaties - duurzame veehouderij - dierlijke productie

Production of food has re-emerged at the top of the global political agenda, driven by two contemporary challenges: the challenge to produce enough nutritious food to feed a growing and more prosperous human population, and the challenge to produce this food in an environmentally sustainable way. Current levels of production of especially animal-source food (ASF), pose severe pressure on the environment via their emissions to air, water, and soil; and their use of scarce resources, such as land, water, and fossil energy. The livestock sector, for example, is responsible for about 15% of the global anthropogenic emissions of greenhouse gases and uses about 70% of global agricultural land.

Many proposed mitigation strategies to feed the world sustainably, therefore, focus primarily on reducing the environmental impact of the livestock sector, so-called production-side strategies. Other strategies focus on changing consumption patterns by reducing consumption of ASF, or on shifting from ASF with a higher environmental impact (e.g. beef) to ASF with a lower environmental impact (e.g. pork or chicken), so called consumption-side strategies.

Most of the environmental impact of production of ASF is related to production of feed. One production-side strategy to reduce the environmental impact is the use of products that humans cannot or do not want to eat, such as co-products, food-waste, and biomass from marginal lands for livestock feed (referred to as ‘leftover streams’ in this thesis). This strategy is effective, because feeding leftover streams to livestock transforms an inedible food stream into high-quality food products, such as meat, milk, and eggs.

Two production-side strategies that use leftover streams as livestock feed were explored in this thesis: replacing soybean meal (SBM) in diets of growing pigs with either rapeseed meal (RSM) or with waste-fed larvae meal. Replacing SBM with RSM in growing-pig diets was assessed because RSM became increasingly available following an increase in bio-energy production in the EU. In this strategy, therefore, the RSM content in pig diets increased at the expense of SBM. SBM is an ingredient associated with a high environmental impact. It was expected, therefore, that replacing SBM with RSM in pig diets would lead to a decrease in the environmental impact of pork production. Replacing SBM with waste-fed larvae meal was assessed because recent developments show the environmental benefits of rearing insects as livestock feed. Insects have a low feed conversion ratio (kg feed/kg product) and can be consumed completely, without residual materials, such as bones or feathers. The nutritional value of insects is high, especially as a protein source for livestock. Insect-based feed products, therefore, can replace conventional feed ingredients, such as SBM. Altogether this strategy suggests that waste-fed larvae meal might become an important alternative feed source in the future.

To gain insight into the status quo of the environmental impact of both mitigation strategies, replacing SBM with RSM or with waste-fed insects, we first used the attributional life cycle assessment (ALCA) method. Based on the ALCA method, results showed that each mitigation strategy was promising. Replacing SBM with RSM in growing pig diets hardly changed either global warming potential (GWP) or energy use (EU), but decreased land use (LU) up to 16% per kg body weight gain. As expected, feed production had the largest environmental impact, responsible for about 50% of the GWP, 60% of the EU, and 77% of the total LU. Feed production in combination with feed intake, were the most sensitive parameters; a small change in both these two parameters changed the results. Replacing SBM with waste-fed larvae meal in growing-pig diets showed that EU hardly changed, but GWP (29%) and LU (54%) decreased per kg body weight gain. Based on ALCA results, each mitigation strategy, therefore, seems to offer potential to reduce the environmental impact of pork production. An ALCA, however, has two disadvantages: it does not account for product-packages and it does not consider feed-food competition.

The first disadvantage of ALCA was that the complexity of dealing with product-packages is not fully considered. ‘Product-package’ refers to a multiple-output situation. During the processing of sugar beet, for example, beet-pulp and molasses are produced in addition to sugar. Sugar, beet-pulp, and molasses together form a ‘package of products’ because they cannot be produced independently from each other. An ALCA does not account for the fact that the production volume of the co-product(s) depends on the demand for the determining product (e.g. sugar), which results in the limited availability of co-products. Increasing the use of co-products in animal feed, consequently, results in reducing use of a co-product in another sector, requiring them to be replaced with a different product. The environmental impact of increasing the use of a co-product or food-waste, therefore, depends on the net environmental impact. The net environmental impact refers to the environmental benefits of using the product in its new application minus the environmental cost of replacing the product in its old application.

A consequential theoretical framework was developed to account for product-packages. The results, based on the consequential framework, contradicted standard ALCA results. The consequential LCA (CLCA) method we used for replacing SBM with RSM showed an increased GWP (up to 15%), EU (up to 12%), and LU (up to 10%) per kg body weight gain. Moreover, this CLCA method showed that replacing SBM with waste-fed larvae meal increased GWP (60%) and EU (90%), but decreased LU (73%) per kg body weight gain.

Accounting for product-packages increased the net environmental impact of each strategy, replacing SBM with RSM or with waste-fed larvae meal. The difference in results between ALCA and CLCA was especially large in the strategy with waste-fed larvae meal. The difference was caused mainly by the use of food-waste. Food-waste fed to larvae was used initially to produce bio-energy via anaerobic digestion. In CLCA, the environmental impact related to replacing the bio-energy function of food-waste with fossil-energy was included. The net environmental impact became negative, because environmental benefits of replacing SBM with waste-fed larvae meal were less than environmental costs related to the marginal energy source, i.e. fossil energy, replacing the bio-energy. Results of the indirect environmental impact, however, are situation specific: if the marginal energy source were wind or solar energy, the net environmental impact of using waste-fed larvae meal might be positive. Waste-fed larvae meal, therefore, appears to be an interesting mitigation strategy only when energy from wind and solar energy are used more dominantly than energy from fossil sources.

If results were based solely on ALCA, then these potentially negative impacts would have been overlooked. Consideration of the environmental consequences of product-packaging, therefore, is essential to determine total environmental costs. If policy makers or the feed industry want to assess the net environmental impact of a potential mitigation strategy, then we recommend to perform a CLCA instead of an ALCA. The framework developed in this thesis can be used to perform such an assessment.

The second disadvantage of an LCA was that it does not take into account feed-food competition, e.g. competition for land between humans and animals. Most LCA studies focus on the total amount of land required to produce one kg ASF. LCA studies do not account for competition for land between humans and animals, or so-called feed-food competition. In other words, they do not include, differences in the consumption of human-edible products by various livestock species or differences in the suitability of land used for feed production as land to cultivate food-crops directly. Given the global constraints on land, it is more efficient to grow food directly for human consumption rather than for livestock. To address the contribution of livestock to a future sustainable food supply, a measure for land use efficiency was developed, called the land use ratio (LUR). The LUR accounts for plant productivity, efficiency of converting human-inedible feed into ASF, and suitability of land for crop cultivation. The LUR also has a life-cycle perspective.

Results of the LUR illustrated that dairy cows on sandy soil, laying hens, and pig production systems in the Netherlands have a LUR >1.0. In terms of protein produced per m2, therefore, it is more efficient to use these soils for livestock production to produce crops for direct human consumption than to produce feed for livestock. Only dairy cows on peat soil produce human digestible protein (HDP) more efficiently than crops do, because peat is not suitable for crop production. The LUR allows identification of livestock production systems that are able to produce HDP more efficiently than crops do. Livestock systems with a LUR<1.0, such as dairy on peat, have an important role to play in future sustainable nutrition supply.

Results of the LUR showed that livestock production systems using mainly co-products, food-waste, and biomass from marginal land, can produce human digestible protein more efficiently than crop production systems do. The availability of those leftover streams, however, is limited and, therefore, the amount of ASF produced based only on leftover streams is also limited. Because LUR is a ratio, LUR results do not give an indication of how much ASF can be produced based on livestock systems that feed mainly on leftover streams.

The third, and last, mitigation strategy, therefore, focused on the amount of ASF that can be consumed by humans, when livestock are fed only on leftover steams, also referred to as “default livestock”. The calculation of the amount of ASF was based on the assumption that a vegan diet was consumed in principle. The resulting co-products and food-waste were fed to pigs and, biomass from grazing land was fed to ruminants. Results showed that in total 21 g animal source protein per person per day could be produced by feeding livestock entirely on leftovers.

Considering feed-food crops and feeding food-waste made an important contribution to the 21 g of protein that could be produced from default livestock. Considering feed-food crops implies that choices have to be made between different crops, based on their contribution to feed and food production. Oil production from soy cultivation, for example, resulted in the co-product SBM. Results showed that considering feed-food crops can affect the final protein production from pork. The practice of feeding food-waste to livestock is currently prohibited due to problems of food safety but the practice shows potential in extensively reducing the environmental impact of livestock production. Considering feed-food crops and feeding food-waste are examples of mitigation strategies that currently can be implemented to reduce further the environmental impact of the livestock sector.

On average, it is recommended to consume about 57 g of protein from ASF or plant-origin per person per day. Only ASF from default livestock does not fulfil the current global protein consumption of 32 g per person per day, but about one third of the protein each person needs can be produced without any competition for land between feed and food production. To feed the world more sustainably, by requiring livestock production systems with a LUR <1.0, however, a paradigm shift is needed. Global average consumption of ASF should decrease to about 21 g of protein per person per day. Innovations are needed, moreover, to overcome problems of food safety and technical concerns related to collecting the leftover streams. This applies, in particular to food-waste, which is currently unused in livestock production but which presents a valuable strategy in mitigating environmental impacts caused by livestock production. Livestock systems should change their focus, furthermore, from increasing productivity per animal towards increasing protein production for humans per ha. By using leftover streams optimally, the livestock sector is able to produce a crucial amount of protein, while still avoiding competition for land between feed and food crops. Livestock, therefore, can make an important contribution to the future nutrition supply.

Kringlopen - Grondstoffen : Kennisclip Bogo-project e-learning
Baltissen, A.H.M.C. - \ 2016
Groenkennisnet
cycling - resource conservation - biobased economy - renewable resources - recycling - horticulture - teaching materials - kringlopen - hulpbronnenbehoud - vervangbare hulpbronnen - tuinbouw - lesmaterialen
Deze kennisclip maakt onderdeel uit van de lesmodule Biobased Economy van het CIV T&U.
Compost en nuttige organismen kunnen weerbaarheid verhogen (interview van Tijs Kierkels met Joeke Postma)
Postma, Joeke - \ 2015
greenhouse horticulture - cultural methods - cropping systems - substrates - composts - soil organic matter - recycling - vegetables - soil suppressiveness
Phosphorus recycling from the waste sector
Ruijter, F.J. de; Dijk, W. Van; Curth-van Middelkoop, J.C. ; Reuler, H. van - \ 2015
Plant Research International, Wageningen UR (Rapport / Plant Research International 641) - 29 p.
phosphorus - waste water - composts - recycling - sewage sludge - sludges - fosfor - afvalwater - compost - rioolslib - slib
An efficient use of phosphorus (P) is necessary as phosphate rock is a finite resource and P is essential for crop production. From the waste sector in the Netherlands, 23 Mkg P is sequestered in landfill, incineration ashes and cement. Flows containing P are discussed, together with options to recover P and reduce P losses, and the interactions between these options.
Fosforstromen door landbouw, industrie, huishoudens en afval
Curth-van Middelkoop, J.C. ; Dijk, W. van; Reuler, H. van; Ruijter, F.J. de; Smit, A.L. - \ 2015
V-focus 2015 (2015). - ISSN 1574-1575 - p. 36 - 38.
fosfaat - kringlopen - landbouw en milieu - agro-industriële ketens - samenleving - afvalhergebruik - overschotten - afvalverwerking - bodemchemie - oppervlaktewater - dierlijke meststoffen - recycling - phosphate - cycling - agriculture and environment - agro-industrial chains - society - waste utilization - surpluses - waste treatment - soil chemistry - surface water - animal manures
Fosfaat: we horen de term vaak in combinatie met overschot. In de landbouw spelen voer, mest en land daar een rol in. Maar hoeveel fosfaat komt er vrij uit de maatschappij? Wat als we dat fosfaat willen recyclen voor landbouwkundige doeleinden? In een studie naar fosforstromen is nagegaan hoe groot de stromen in Nederland zijn.
Handbook for sorting of plastic packaging waste concentrates : separation efficiencies of common plastic packaging objects in widely used separaion machines at existing sorting facilities with mixed postconsumer plastic packaging waste as input
Jansen, M. ; Thoden van Velzen, E.U. ; Pretz, Th. - \ 2015
Wageningen : Wageningen UR - Food & Biobased Research (Reports of Wageningen UR Food &amp; Biobased Research 1604) - ISBN 9789462575295 - 30
recycling - packaging materials - plastics - waste management - waste treatment - sorting - sorters - verpakkingsmaterialen - kunststoffen - afvalbeheer - afvalverwerking - sorteren - sorteermachines
Hergebruik van huishoudelijk kunststofverpakkingsafval is een ingewikkelde keten die in het algemeen uit drie stappen bestaat; gescheiden inzameling bij de burgers of nascheiding uit het huisvuil, sorteren en opwerken tot gewassen maalgoed. Dit onderzoek analyseert de tweede stap, waarin of gescheiden ingezameld kunststofverpakkingsafval of nagescheiden kunststofconcentraat wordt gesorteerd in materiaalfracties die verhandeld kunnen worden met recyclingbedrijven.
Nascheiden van verpakkingsglas uit gemengd huishoudelijk restafval : rapportage van een technische haalbaarheidsstudie
Thoden van Velzen, E.U. - \ 2015
Wageningen : Wageningen UR - Food & Biobased Research - ISBN 9789462575301 - 29
recycling - afvalbeheer - scheiding - scheidingstechnologie - glas - haalbaarheidsstudies - afvalverwerking - waste management - separation - separation technology - glass - feasibility studies - waste treatment
Het recyclingpercentage voor verpakkingsglas is voor 2012 door Nedvang vastgesteld op 71% en voor 2013 op 79%, terwijl de Nederlandse overheid streeft naar een percentage van 90%. [Nedvang 2012 en Nedvang 2013] Ten einde dit percentage te verhogen, is Nedvang begonnen met een publiciteitscampagne “Glas in ‘t Bakkie” en heeft zij opdracht gegeven voor deze verkennende studie naar de mogelijkheden om glas uit huisvuil na te scheiden.
Robustness of life cycle assessment results : influence of data variation and modelling choices on results for beverage packaging materials
Harst-Wintraecken, E.J.M. van der - \ 2015
Wageningen University. Promotor(en): Carolien Kroeze, co-promotor(en): Jose Potting. - Wageningen : Wageningen University - ISBN 9789462575097 - 217
levenscyclusanalyse - onzekerheid - modelleren - gegevensanalyse - gegevens verzamelen - afvalverwerking - recycling - milieueffect - life cycle assessment - uncertainty - modeling - data analysis - data collection - waste treatment - environmental impact

Life cycle assessment (LCA) is a well-established method to evaluate the potential environmental impacts of product and service systems throughout their life cycles. However, it can happen that LCAs for the same product have different and even conflicting outcomes. LCA results need to be robust and trustworthy if they are used in decision making. The aim of this thesis is to evaluate whether the use of multiple data sets and multiple modelling options can increase the robustness of LCA results.

The research starts with identifying reasons for differences in LCA results for the same product. The results of ten existing LCAs for disposable beverage cups are compared to each other as to examine the consistency and robustness of these results. The comparison of the LCAs shows no consistent best or worst cup material. And, the quantitative results for cups made from the same material vary across the LCAs. The evaluation of the methodological choices and the used data sources in each LCA made it possible to identify possible sources for discrepancies in the LCA results. Reasons for differences in results include the variation in the properties of the cups, production processes, waste treatment options, allocation options, choices in system boundaries, impact indicators, and potentially also the data sets that are used.

The thesis next describes a novel method to evaluate and include the influence of data sets and modelling choices on the LCA results. The method is applied in a case study of a disposable polystyrene (PS) beverage cup. The study purposely uses different data sets from various sources for processes with an influential contribution to the LCA results. The study includes two waste treatment options (incineration and recycling). The multiple data sets represent the variability among processes, and the waste treatments represent choices in the modelling of the life cycle of the PS cup.

This variability among the data sets for a similar process is presented as a spread in the results. This spread in the results for the PS cup is caused by differences in the amount and type of the used resources and energy, reported emissions, the origin of the production location, the time period of data collection, or choices in the value of recycled PS. The overlapping spread in the quantitative results for incineration and recycling prevents a decisive conclusion on the preferred waste treatment option for the PS cups.

Next, the method for the use of multiple data sets and modelling choices is applied in a comparative LCA of disposable beverage cups. Three cups are compared: a PS cup, a polylactic acid cup (PLA, a biobased plastic), and a cup made from biopaper (paper with a lining of biobased-plastic). The waste treatment options consist of incineration and recycling for all three cups, and additionally composting and anaerobic digestion for the PLA and biopaper cup.

The use of multiple data sets and modelling choices leads to a considerable spread in the LCA results of the cups. The results do not point to the most environmentally friendly cup material, and neither to a preferred waste treatment option. The results clearly identify composting, however, as the least preferred waste treatment option for the PLA and biopaper cups. The spread in the results makes the comparison of the results for the cups more complex, but the results provides more robust information for decision makers. The combined inclusion of the variability among data sets and the waste treatment options makes the results more trustworthy.

The thesis then dives deeper into the methodological modelling of recycling in LCA and describes and evaluates six widely used recycling modelling methods: three substitution methods, an allocation method, the recycled-content method, and the equal-share method. The main difference among the six methods lies in the assumption on where and how to apply credits for recycled material in the life cycle of the product.

These six methods are applied in two case studies: a disposable PS beverage cup and an aluminium beverage can. The results for the aluminium can clearly depend on the applied recycling modelling method, the recycling rate of the disposed cans, and the amount of recycled material used in the cans. The results for the PS cup additionally depend on the consideration of a drop in the quality of the recycled PS compared to the original PS, and the other waste treatments (landfilling and incineration) for the cups. Including several recycling modelling methods in the LCA incorporates the various underlying modelling philosophies of the methods, and thus makes the results more robust.

This thesis demonstrates the added value of including multiple data sets and multiple modelling choices in LCA. The use of multiple data sets is especially useful if general processes instead of specific processes are used in the representation of the product system. The use of multiple data sets increases the accuracy of the results, and is a supplemental tool next to statistical methods which increase the precision of the results. The simultaneous handling of variability among data sets and modelling choices is hardly performed in LCA. The method presented in this thesis fills this gap and provides a transparent tool to capture these uncertainties. The trade-off between an increase in the robustness of the results and the additional demand for resources (time, money, effort) should be assessed, and depends on the goal of the study and on the intended use of the results. This thesis shows that inclusion of the uncertainty in the LCA results provides the decision maker with valuable information. This thesis thus provides a useful method to increase the robustness of LCA results.

Reductie veen-ontginning door productie veenvervanger middels recycling Champost
Blok, C. ; Visser, P.H.B. de; Eveleens-Clark, B.A. ; Winkel, A. van - \ 2015
Bleiswijk : Wageningen UR Glastuinbouw (Rapport GTB 1354) - 78
mushroom casing soils - paddestoelen - turf - digestiva - anaërobe afbraak - anaërobe verteerders - recycling - emissie - duurzame landbouw - mushrooms - peat - digestants - anaerobic digestion - anaerobic digesters - emission - sustainable agriculture
This report decribes experiments with anaerobic digestation of champost and organic rest products for re-use in mushroom casing. The digestates will reduce the emission of carbon dioxide by peat use for casing and will reduce the number of transport movements. Both reductions serve the mushroom sector. Wageningen UR Greenhouse Horticulture is measuring the quality aspects of the digestates with standard methods used in the potting soil industry such as texture, organic matter and nutrient and ash content. In this report a literature review and measurements of digestates and casings are combined. The literature review lists critical values for amongst others salt, water and air content. It is argued values per unit volume are more informative on water and air distribution than values per unit weight. Extract indicate nutrient levels but only deliver an indirect indication of how plants or mushrooms experience their environment. Measurements indicate it is necessary to wash digestates thoroughly to arrive at EC values <1.0 dS/m. Stability and phytotoxicity of the end products are positive. Using the properties in a model for mixing various materials together did not deliver positive results until late in this project part. A second project part has started.
Hoe kan ons ecosysteem ons geld opleveren?
Vet, L.E.M. - \ 2015
Universiteit van Nederland
afvalverwerking - kringlopen - ecosystemen - ecosysteemdiensten - recycling - cradle to cradle - economische verandering - lesmaterialen - helofytenfilters - waste treatment - cycling - ecosystems - ecosystem services - economic change - teaching materials - artificial wetlands
In de natuur bestaat geen afval: alles wordt hergebruikt. Prof. dr. Louise Vet van Wageningen UR, directeur NIOO, vertelt in dit college dat we de natuurlijke kringloop kunnen inzetten voor ons eigen gewin. Voorbeeld: de stad New York, die in plaats van een nieuwe waterzuiveringsinstallatie een natuurgebied adopteerde en daar het water op natuurlijke manier liet filteren. Daarmee: Miljarden dollars bespaard!
Check title to add to marked list
<< previous | next >>

Show 20 50 100 records per page

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.