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Abstract. Functional-structural models that include detailed mechanistic representation of underlying 
physiological processes can be difficult and expensive to build, and the resulting models are often very 
complicated. This is particularly true when representing carbon allocation, as the various processes 
involved are relatively poorly understood. Purely empirical models, on the other hand, are simpler and 
easier to construct, but are of limited use in simulating, predicting and explaining the way that plants 
adapt and respond to varying environmental conditions. In this chapter, we discuss an intermediate 
approach to modelling plant function that can simulate plant responses, including changes in carbon 
allocation patterns, without requiring a detailed knowledge of the underlying physiology. In this 
approach, plant function is modelled using a ‘canonical’ modelling approach, where processes such as 
carbon allocation are represented by a number of fluxes between compartments, and these fluxes are in 
turn represented using flux functions of a standard mathematical form. The values of the parameters of 
these flux functions are then determined by fitting the global output of the model to global data, rather 
than attempting to make the functions represent underlying processes in a quantitatively accurate way. 
Here we demonstrate the canonical modelling using an example involving the cotton plant, where two 
alternative hypotheses explaining observed compensation after defoliation are represented. We discuss 
some potential advantages of this canonical approach over both more mechanistic and more empirical 
approaches to representing carbon allocation, and conclude that canonical modelling offers a useful, 
flexible and relatively simple way of simulating plant function at an intermediate level of abstraction. 

INTRODUCTION 

Species-specific variations in the morphogenetic process are key to the diversity of 
structure seen in plants, both among species and between individuals of the same 
species in different environments. Various aspects of the physiology or function of 
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the plant are behind these variations, and one of the important differences between 
species is the strategy with which a plant allocates available carbon to its different 
components. 

One way of trying to understand plant morphogenesis is to construct structural 
plant models based on the classification and quantification of growth patterns using 
analysis of architectural data (Hallé et al. 1978; Hayes et al. 1990; Godin et al. 1999; 
Suzuki 2000). Such models, which are designed to describe plant growth without 
explicitly representing underlying physiological processes, such as carbon 
allocation, can be called descriptive or empirical models. However, such models 
cannot capture the interaction between the development of plant structure and 
physiological processes such as carbon allocation. 

The alternative is to build computational models that represent both the function 
and structure of a plant, often termed functional-structural plant models (FSPMs) 
(Room et al. 1996; De Reffye et al. 1997; Kurth and Sloboda 1997; Special issue on 
functional-structural tree models 1997; Fournier and Andrieu 1998; Special issue 
second international workshop on functional-structural tree models 2000; Godin et 
al. 2004). Such models can provide a theoretical framework for experimental 
investigations aimed at deepening our understanding of plant growth. The general 
approach underlying many FS models is to represent the plant as a large number of 
interconnected components (such as internodes and leaves). Various physical, 
chemical and physiological processes (such as light interception, photosynthesis, 
nutrient transport and carbon allocation) that take place within and between these 
components are then represented explicitly (Perttunen et al. 1998; Lacointe 2000; 
Sievänen et al. 2000; Sinoquet and Le Roux 2000; Le Roux et al. 2001) in what are 
called process-based or mechanistic models. 

In many situations, we would like to construct a model that does not require in-
depth experimental investigations or a high level of model complexity, yet is 
capable of capturing the most important, interesting or relevant aspects of the 
function and structure of the plant. We would need a model that is adaptable and 
able to represent causal hypotheses (unlike a purely descriptive or empirical model), 
yet is simpler and easier to construct than the detailed process-based models. A 
modelling approach that tried to find this balance between the advantages of 
empirical and mechanistic modelling could be called an ‘intermediate-level’ 
approach.

The intermediate-level FS approach discussed here (Renton 2004) is based on 
integrating canonical models (Savageau 1969; 1976; Voit 2000) of plant function 
with L-system (Lindenmayer 1968a; 1968b; Prusinkiewicz and Lindenmayer 1990) 
simulations of plant structural development. Previous presentations of this approach 
(Renton et al. 2005a) have focussed on how canonical modelling can be used to 
simulate various aspects of plant function in FS models, and how a structural L-
system model can be linked to an existing canonical model (Kaitaniemi 2000) of 
plant function (Renton et al. 2005b). Here we focus on how canonical modelling can 
be used to represent carbon allocation in particular. 
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CANONICAL MODELLING OF PLANT FUNCTION 

Canonical non-linear models have been employed to model a variety of complex 
biological systems (Torres 1996; Voit and Sands 1996a; Martin 1997; Kaitaniemi 
2000) in a mathematically standard way (Voit 1991; 2000). The diagrammatic 
representation of a canonical model consists of ‘compartments’, ‘fluxes’ and 
‘influences’. Figure 1 provides a simple example where compartments are drawn as 
circles, fluxes as solid arrows and influences as dashed arrows. Compartments are 
associated with a variable that usually represents some real-world quantity. Fluxes 
represent flows into, out of, and between compartments. An influence drawn 
between a compartment and a flux indicates that the magnitude of the flux depends 
on the magnitude of the quantity represented by the compartment variable. It is 
generally assumed that a flux is influenced by the compartment that it originates 
from, so these influences are not drawn. 

Figure 1. Example graphical representation of a canonical model 

As a high-level abstraction representing the physiology of a plant, x1 would 
represent unallocated or substrate carbon, x2 would represent carbon allocated to the 
shoot and x3 would represent carbon allocated to the root. The flux f1 would represent 
carbon acquisition through photosynthesis, f2 would represent the allocation of 
substrate carbon to the shoot and f3 would represent the allocation of substrate 
carbon to the root. The arrow i1 would capture the hypothesis that the rate of carbon 
acquisition is affected by leaf biomass and the arrow i2 would represent the 
hypothesis that the rate of carbon allocation to the shoot is influenced by the amount 
of root biomass. It is also assumed that the allocation of substrate carbon to both 
shoot and root will depend on the amount of substrate carbon. 

Once this diagrammatic (or compartment) representation of the model has been 
formulated, fluxes are then represented as ‘canonical’ (or standardized) functions of 
all compartment variables that influence that flux. The standard canonical power-
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law function consists of a ‘rate constant’ multiplied by the product of all associated 
compartment variables, each raised to a constant ‘kinetic order’ power. In Figure 1, 
flux f2 originates from the x1 compartment and is influenced by the x3 compartment, 
so it would be written as  

2321 )()())(),(( 312312
kk txtxtxtxf , (1) 

where 2 is the rate-constant parameter and k21 and k23 are the kinetic-order 
parameters (with subscript pairs indicating the flux being operated on followed by 
the compartment-variable identifier). 
The way in which these fluxes are aggregated depends on which canonical 
formalism is being employed. One of the most commonly used formalisms is a 
Generalized Mass Action (GMA) system, where the rate of change of a 
compartment variable is written as the sum of all fluxes in, minus all fluxes out. 
Using a GMA system in this example means the differential equation for x1 would be 
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which is normally written in the abbreviated form 

31232112
13312211

kkkk xxxxx (3) 

The other two differential equations representing the model would thus be 
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The procedure for using the canonical power-law modelling approach to 
simulate an aspect of plant function can be summarized in five steps, as follows. 
First, the important or significant quantities must be identified, and associated with a 
compartment and variable. Second, the fluxes or flows into, out of, and between 
these compartments must be chosen. Third, the modeller must decide which 
quantities affect which of these fluxes, and include these influences in the model. At 
this point, we have formulated a compartment model, such as the one shown in 
Figure 1, that represents qualitative mechanistic assumptions or hypotheses. In the 
fourth step, a canonical form, such as the power-law form, is used to represent each 
flux as a function of the influencing variables. Finally, values for the parameters of 
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these flux functions are estimated, using one or more of a number of possible 
approaches, including eliminating unnecessary parameters; recognizing constraints 
on parameters implied by the modelled system; reformulating equations to give 
parameters a clearer significance; scaling variables; using ad hoc manipulation of 
parameter values with visual feedback of model output; flux-based estimation and 
using computational algorithms to fit model output at the global scale (Voit 2000; 
Renton 2004). The parameterized model can be tested and compared against further 
data, and modified as necessary. 

The first three steps of the canonical modelling process are mechanistic in nature 
and, in general, the inclusion of more compartments and connections (fluxes and 
influences) corresponds to a more mechanistic model. The last two steps are 
empirical in that a general equation form is used to summarize a number of 
physiological processes, and parameter values are chosen to ensure that model 
output fits the data rather than using an equation form and parameter values 
representing a particular mechanism. 

LINKING TO A STRUCTURAL REPRESENTATION 

A canonical model of plant function can be linked to a representation of plant 
structure to create a functional-structural plant model (Renton et al. 2003; Renton 
2004; Renton et al. 2005b). The basic strategy in linking a canonical model of 
function to a structural L-system model is to make the L-system rules for expansion 
(change in size of existing plant components) and/or development (the addition of 
new plant components) depend on the state variables in the canonical model. If the 
canonical variables correspond to individual structural component characteristics, 
such as having a compartment for the size of each leaf, this is a straightforward 
process. If the canonical variable represents a global characteristic of the plant, such 
as number of components, or plant height or biomass, increases in the variable can 
then be ‘shared out’ to create new components and/or to expand the size of existing 
components in the L-system model according to hypothesized distribution rules. 
These distribution rules may be stochastic, simulating structural variability, and may 
also simulate aspects of plant physiology, by taking into account structural and 
environmental inputs, such as location within a crown, or availability of light. 

CANONICAL MODELLING OF DEFOLIATION IN COTTON 

The use of the canonical modelling approach to represent carbon allocation 
processes can be demonstrated by considering growth of the cotton plant. The model 
is based on a glasshouse experiment that measured cotton plants at regular intervals 
as they grew to obtain internode and leaf numbers and lengths, which were 
processed to give estimates of leaf and stem biomass for an average plant. Further 
details on experimental procedure; data collection and treatment; the results 
obtained; and model construction, parameterization and testing are available 
elsewhere (Thornby et al. 2003; Renton 2004; Thornby 2004; Renton et al. 2005a). 
A basic canonical model of carbon acquisition and allocation, similar to the example 
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given in Section "Canonical modelling of plant function", consists of compartments 
for unallocated or substrate resources (xu), for resources fixed in leaf biomass (xl), 
and in stem biomass (xs), as shown in Figure 2. The flux fi represents resource 
acquisition under the standard conditions in which the plants were grown and fl and 
fs represent allocation of resources to leaf and stem, respectively. The flux fo
represents the allocation of resources to all other parts of the plant, or resources that 
are used or lost in other ways. The dotted arrow represents the influence of leaf 
biomass on the rate of resource acquisition. This diagrammatic  

Figure 2. Compartment representation of the basic cotton growth model (top) and the output 
of this model compared to the data points (bottom). In this model, xu represents the amount of 
unallocated resources, and xl and xs represent the leaf and stem biomass, respectively. The 
flux fi represents resource acquisition and fl,, fs and fo represent the allocation of resources to 
leaf, stem and other destinations, respectively 

representation was translated into a system of canonical equations, which was then 
parameterized to fit the data for the control treatment. This basic cotton growth 
model was able to simulate the observed data for the control treatment plants, as 
shown in Figure 2. 
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To construct the FS model, we began with this basic canonical model and an 
existing ‘template’ structural L-system model of cotton development (Hanan and 
Hearn 2003; Thornby et al. 2003; Hanan 2004; Thornby 2004). Since we were 
interested primarily in defoliation and leaf biomass compensation, the models are 
linked using the total leaf biomass variable (xl) of the canonical model. Apart from 
this link, the two sub-models run in parallel, with development (that is, the rate of 
appearance of new plant parts and the types of parts being produced) being 
controlled by the original L-system model independently of the canonical model. 
The canonical sub-model is integrated with a very small (approximately continuous) 
time step and the structural sub-model is updated with a daily time step. At the end 
of each day, the ‘potential growth’ of each immature leaf in the L-system sub-model 
is calculated using a function that first rises, then falls with the age of the leaf. The 
‘total potential growth’ is calculated as the sum of all biomass requirements for the 
potential growth of all immature leaves in the L-system structure; the ‘total actual 
growth’ is set to be the amount of new leaf growth indicated by the canonical model 
for that day (which generally differs from the total potential growth indicated by the 
structural model); and the ‘growth proportion’ is set equal to the ‘total actual 
growth’ divided by the ‘total potential growth’. The actual growth of each individual 
leaf is then calculated as this ‘growth proportion’ multiplied by the original potential 
growth of that leaf. This ensures that the total leaf area in the structural model is the 
same as that indicated by the canonical model at the end of the day, and that each 
leaf grows according to a sigmoid function in ideal conditions. It also causes the rate 
of individual leaf growth to slow when many leaves are growing at the same time. 

This model can then be extended to consider more detailed aspects of 
physiology. Here, we use the model to investigate different functional hypotheses 
regarding physiological responses to defoliation, using data from an experiment 
involving defoliation of cotton seedlings (Thornby 2004). In the canonical sub-
model, defoliation is modelled as a reduction in the leaf compartment value at the 
appropriate time. In order for compensation to occur, as was found in the data, there 
must be an additional mechanism that increases the leaf production rate following 
defoliation. We formulated two alternative explanatory hypotheses regarding this 
mechanism. One hypothesis is that the defoliation causes the production of some 
signalling compound in the plant, and it is the presence of this compound that causes 
increased allocation of resources to leaf production. The other hypothesis is that 
leaves constantly produce some compound such that the concentration of this 
compound within the plant remains relatively constant unless defoliation occurs, in 
which case production, and thus concentration, of this compound drops. According 
to this hypothesis, it is this drop in concentration that, in turn, causes the increased 
rate of leaf growth. Based on the original cotton growth model (Figure 2), we  
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Figure 3. Compartment representations of canonical models of growth and compensation in 
cotton, based on the hypotheses that compensation following defoliation is caused by the 
presence (top) or the absence (bottom) of a regulating compound. In these models, xh
represents the amount of the compound in the plant, xc represents the concentration of the 
compound, and xb is a Boolean trigger variable that is ‘turned on’ following defoliation for 
an amount of time proportional to the level of defoliation. The flux fp represents the 
production of the compound and fd represents its degradation 

developed the two compartment models shown in Figure 3 to represent these two 
alternative hypotheses. These were translated into canonical equations in the 
standard way and parameterized to fit the observed data for the two defoliation 
treatments used in the experiment. These two alternative models of compensation 
were both able to simulate the observed compensation behaviour (Renton 2004; 
Figure 4, Renton et al. 2005a).
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Figure 4. Simulating the effect of 58% defoliation on day 79 using the ‘presence’ model (top) 
and the ‘absence’ model (bottom) 

The user of the FS model is able to specify if and when a particular leaf is removed 
from the structural L-system model; at the same time, the equivalent amount of 
defoliation is calculated and simulated in the canonical model. The response to this 
defoliation (simulated by the canonical model according to the presence or absence 
hypothesis) will involve a boost to leaf biomass allocation in the canonical model, 
leading to an increase in the rate at which new leaves will grow in the L-system 
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model. The FS model can thus be used to predict individual leaf biomass (and hence 
area), and the change in individual leaf biomass as a result of defoliation. Output 
from the FS model is shown in Figure 5. 

Figure 5. Example output of the FS model of the cotton plant’s growth and response to 
defoliation. The arrow shows where three leaves have been removed in the fourth image. 
Structural output, such as leaf sizes over time, can now be checked against data 

DISCUSSION 

Canonical plant models include a representation of underlying processes, 
mechanisms and interactions, and therefore share some of the advantages that 
detailed process-based mechanistic models have over empirical models. First, the 
process of constructing the model requires the modeller to develop a set of causal 
hypotheses regarding the observed behaviour and represent these hypotheses in a 
‘formalized’ and precise way. Second, the finished model can have explanatory 
value; the model is capable of explaining observed behaviour in terms of underlying 
mechanisms. Third, the model can be used to predict behaviour in a wider range of 
conditions and situations beyond those in which the original data used to construct 
them was collected (Kaitaniemi 2000). 

Because of these three attributes, the canonical approach can be used for 
exploratory modelling strategies where the model acts as a theoretical framework for 
experimental investigations. Because the model is a synthesis of a number of 
mechanistic hypotheses regarding the plant’s behaviour, these underlying biological 
hypotheses can be falsified or refined by comparing the model output to patterns 
observed in experimental data. Versions of the model representing a number of 
alternative hypotheses can be constructed, as shown with the ‘absence’ and 
‘presence’ versions of the cotton model. The approach allows processes and new 
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variables to be added to the model without changing its overall structure (Voit and 
Sands 1996a), which facilitates building these alternative versions. These model 
versions can be used to design experiments or suggest field observations that will 
distinguish between these different versions, and thus help determine the validity of 
the alternative hypotheses. In this way, an ongoing process of model refinement and 
data collection will lead to an increased understanding of biological mechanisms. 

However, unlike the detailed process-based approach, the canonical modelling 
approach can be used when detailed hypotheses or data regarding underlying 
physiological or chemical processes is not available, such as with carbon allocation. 
This is because the compartment model can be formulated at a relatively abstract 
level, the flux functions are of a standard power-law form, and the parameters of 
these functions can be found empirically by fitting model output to relatively easily 
observed global variables, rather than by direct measurement of physiological 
processes (Voit and Sands 1996a; 1996b; Kaitaniemi 2000). For example, the cotton 
model is based on hypotheses regarding causal mechanisms and physiological 
interactions, but these were formulated and represented at a general and non-
quantitative level. In a situation such as this, where there seems to be little 
conclusive evidence for what physiological processes are involved in changes to 
carbon allocation patterns after defoliation (Thornby 2004), a more abstract style of 
modelling, such as the canonical modelling approach, may be the only option. 

Even if the eventual aim is to construct a more detailed and process-based 
model, a canonical model can act as a ‘placeholder’ for modelling parts of the 
system that are not yet well understood. More realistic modelling can be used to 
represent those parts for which a more detailed understanding already exists. For 
example, a detailed process-based model of photosynthesis could replace the 
‘resource acquisition’ flux fi in the canonical cotton model, while carbon allocation 
would remain represented by canonical flux functions. In this way, the model can 
contain both abstract and more explicit representations of plant function. 

Due to the flexibility of the canonical form of their flux functions, canonical 
models will tend to fit data more accurately than most empirical models. When 
parameterized to fit global data, they will also be more accurate than process-based 
models with parameters fitted at the level of the underlying processes (Renton 2004; 
Renton et al. 2005a). Canonical models can be used directly, or adapted, to simulate 
a range of aspects of plant function, such as resource acquisition and growth, limits 
on growth, storage, allocation and suppression, as well as non-continuous changes in 
behaviour, such as the triggering of fruiting (Renton 2004; Renton et al. 2005a). 
They can also be used to model environmental influence on plant growth (Voit 1993; 
Renton 2004); prioritized allocation of resources (Renton 2004); conversion 
between continuous biomass quantities and discrete numbers of shoots at the end of 
a season (Kaitaniemi 2000); and thinning dynamics (Voit 1988) and biomass 
budgets and growth (Voit and Sands 1996a; 1996b) in tree stands. These processes 
can be represented canonically at whatever scale is most relevant: whole fields, 
individual plants, or plant components. 

The usefulness of a canonical model of plant function depends on the level of 
abstraction of the model. Very descriptive canonical models (Renton et al. 2005a) 
can be used for visualizing, describing or communicating experimental results. A 
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more mechanistic canonical model, such as the cotton example, can be used as a 
theoretical framework in an ongoing process of experimental investigation, as 
discussed above. While detailed process-based models tend to aim for a high degree 
of realism, and thus risk becoming very complex, the canonical approach helps build 
a functional model that is ‘just complex enough’, by including only the relevant 
processes at the necessary level of detail for a particular problem. If the goal is to 
produce a very realistic and detailed model for research purposes, then the canonical 
approach may not be appropriate. Nevertheless, if the testing and refining of a 
canonical model were continued against a broad range of experimental results, the 
model may eventually have the potential to be used for management applications, 
such as decision-making, prediction or control. 

Canonical modelling of plant function can certainly be employed without a 
structural representation, but adding structure increases the usefulness of the model 
in different ways, depending on the model’s level of abstraction. Adding a 
corresponding representation of plant structure enhances the ways that a descriptive 
model can be used for visualizing, describing or communicating information. With 
the addition of structure, a descriptive canonical model could also act as a sub-model 
within broader theoretical investigations, such as looking at how light interception 
patterns change with the growth of the plant, or understanding patterns of insect 
movement or spore dispersal through the structure of the plant. Adding structure to a 
more mechanistic canonical model, like the cotton model, creates many extra 
aspects of model output, such as branching patterns, size of individual components, 
and even the visual appearance of the plant, that can be checked against 
experimental data. Furthermore, adding a model of structure that interacts with the 
canonical model of physiology in some way – through simulations of endogenous 
signalling or light capture by individual leaves (Renton et al. 2005b), for example – 
can enhance the level of mechanism of the model. 

The canonical modelling approach provides a means of modelling plant 
processes, such as carbon allocation, at an ‘intermediate’ level of abstraction, 
between that of detailed process-based mechanistic models aiming for a high degree 
of realism, and empirical models aiming simply to describe observed patterns. The
resulting functional model can then be linked to structural plant models to produce 
FS plant models. Future research could further develop the approach’s usefulness for 
plant modelling by investigating how the approach can be applied to a wider range 
of experimental and modelling situations; comparing the benefits of different 
canonical function forms; simplifying and possibly automating the process of 
parameter estimation; and exploring in greater depth and eventually formalizing the 
process of linking the canonical model to the structural model. 
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