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A model structure for estimating malaria risk 

M.B. Hoshen  and A.P. Morse

Abstract

Malaria is one of the leading causes of death in the developing world today. While 
prevention and treatment methods are available, their large-scale usage is a major 
drain on governmental budgets, and not applied whenever necessary. For this reason, 
understanding the endemicity of a region will allow the efficient implementation of 
suitable prevention methods. More importantly, the prediction of extraordinary 
malaria outbreaks will allow the recruitment of emergency facilities before 
transmission becomes widespread. In addition, climate change may influence the 
endemicity pattern of a region, causing malaria incidence to rise in areas in which it 
was non-existent or controlled. For all these purposes, a seasonal to decadal malaria 
forecast is needed. A novel approach has been attempted, using dynamic 
mathematical biological modelling. There has been initial work on the prediction of 
malaria epidemic based on seasonal climate forecasts, in areas of unstable 
transmission, which may be used to provide early warning. Here we describe a 
mathematical biological model of the weather-dependent parasite transmission 
dynamics, within-host and within-vector. The biological structure and the mathematic 
formulation permit computer simulation of infection patterns under various climatic 
and control conditions. Here we present the model structure and results at a local scale 
using reanalysis weather data. We then discuss the role of different aspects of the 
impact of unusual climatological effects and their potential implications, as well as 
further developments in the simulation structure and outline pathways for future 
progress. We also suggest further aspects of biological research, required for model 
improvement. 
Keywords: malaria transmission; dynamic modelling; mathematical model; 
endemicity; Africa 

Introduction

Malaria is one of the major causes of global mortality and morbidity. With an 
unknown number of 1 - 2.7 million patients dying annually and hundreds of millions 
afflicted, the need for containment and for reduction of the health burden is obvious. 
But due to the scarcity of resources, and the lack of a clear policy of their distribution, 
this control is not attained. Even though the aetiology of the disease has been known 
for a century (Ross 1911), the full application of this knowledge requires a practical 
model for a decision-making process. This model must be either robust enough to 
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reflect all conditions or, preferably perhaps, flexible enough to be adaptable to local 
conditions. The development of such a model, and the training of the model to local 
conditions which can be applied to changing conditions, is a formidable task. Such a 
model must attempt to combine various sources of data regarding different aspects of 
the disease dynamics and link these aspects with external causes or covariates, which 
serve as driving forces or as surrogates for such forces. Due to the constant increase in 
empirical knowledge regarding malaria, given the international interest being drawn 
lately to the disease, the model should be developed in a way in which new segments 
of knowledge may be added into the modelling structure. Hence a modular structure is 
required, allowing for evaluation and updating of sub-processes, which may be 
defined, measured and tested in laboratory or field settings. Parameter values may 
thus be introduced empirically, and may be amended to reflect changes due to trends 
or to human intervention.  

The principal malaria transmission models to date are of a few general forms. 
There are statistical models, which compare malaria transmission variables (such as 
the entomological inoculation rate, EIR) with local conditions (Killeen et al. 2000). 
There are rules-based models, which determine the regions in which malaria 
transmission is possible (Snow et al. 1998). In addition there are dynamic models 
relating malaria transmission to constant climate conditions (Bailey 1982). Hitherto 
there do not seem to have been models relating malaria transmission to changing 
weather, and which hence may serve for decision-making based on weather forecasts, 
nor in the evaluation of the impact of public-health effects on transmission dynamics 
in a varying climate. 

The present report wishes to fill part of the niche with some of the basic 
groundwork towards a complete numerical model for the weather-based epidemiology 
of falciparum malaria. The report will present a simple model of malaria transmission 
dynamics, and then present the results of variation of model values to determine the 
robustness of the structure. It will then suggest various ways of evaluating the impact 
of intervention policies, and some simple pictures of minor climate change and 
potential impact on clinical incidence. 

Materials and methods 

The basic structure of the model and its mathematical formulation will be 
published elsewhere (Hoshen and Morse 2004) and will only be highlighted here. The 
model is based on the full dynamics of the host–vector–parasite triangle depicted 
graphically in Figure 1. 

We must differentiate between human (hepatic and erythrocytic stages) and 
mosquito infection (sporogonic cycle) dynamics, while the mosquito life 
(gonotrophic) cycle must also be taken into consideration. The human life cycle is less 
important as human life expectancy is many times longer than the duration of 
infection. Human malaria-related mortality is rarely a significant fraction of the total 
population.

The parasite life cycle, with human asexual and vector sexual sections, is presented 
in Figure 2. Both humans and mosquitoes may be infected by parasites. The human 
infection is transmitted by anophelean mosquito bites and the mosquito infection 
transmitted by biting of humans. No direct transmission is possible between 
mosquitoes or between humans. 
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Figure 1. The disease interaction triangle: human host, Anopheles vector and Plasmidum
parasite (shown in human blood sample) 

Figure 2. The parasite life cycle. The sexual (vector) stage is depicted on the left side, while 
the asexual (human) stage is on the right side. For intra-organism development time direction 
is downwards. The erythrocyte stage is cyclic multiplication 

Human clearance of infection is a slow process, which may last a year. It is 
assumed to be a first-order process. Infectious mosquitoes never clear their infection 
until death. Both human and vector infections take time to develop into an infectious 
status. The indigenous mosquito does not seem to be harmed by the infection, but 
non-immune humans may die or be severely sick. The impact of immunity on severity 
of human infection is complex. In many cases, such as when infection is constant, the 
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infection is asymptomatic (thus ‘healthy’ individuals may be carriers), while in cases 
when the infection pressure is reduced, such as after a sustained low-transmission 
season, morbidity and mortality increase. While the within-host parasite dynamics are 
weather-independent, the within-vector parasite dynamics, as well as the mosquito’s 
life cycle (Figure 3), are weather-dependent. Both the development of the parasite 
within the vector (sporogonic cycle) and the progress of the gonotrophic cycle 
(process of biting, development of eggs and oviposition) have been modelled by the 
usage of degree-day dynamics (Detinova 1962). Thus the length of either cycle may 
be expressed as LC=1+Dd/(T-Tc), where Dd is the length of the cycle in degree days, 
Tc the threshold for development and T the daily average temperature. Dd is 37 and 
111 degree day, and Tc is 7.7 and 18oC for the gonotrophic  and sporogonic cycles, 
respectively.

Figure 3. Schematic representation of vector development. Pre-gravid development is towards 
the right. Mature dynamics are cyclic 

Numerous issues are still contestable in the model. Some sub-models have not 
been created with full empirical evidence. Some have been based on partial evidence, 
while in some cases we have tried to rule between two possibilities. Here we would 
like to investigate the sensitivity of these model processes to changes in values of 
parameters which seem to be crucial to the modelling of the transmission process. 
New field research is now underway to measure the values of these parameters in 
natural settings.

The daily survival of the adult Anopheles gambiae (s.l.) vector is temperature-
dependent. It is not clear whether the survival per gonotrophic cycle is constant, save 
extremely high lethal temperatures, and hence the daily survival is dependent on the 
length of the gonotrophic cycle, with the death rate being a constant for all weather 
conditions (Hitherto Lindsay-Birley model, LB) (Lindsay and Birley 1996), or 
whether survival decreases more smoothly for higher temperatures (Martens model, 
MM) (Martens et al. 1995). Thus we test the output with both models, and for varying 
values of the LB per cycle survival . The default value was 0.44. 

For other parameters we start with values which seem to be realistic, being within 
empirical ranges (when determined) and producing results which are consistent with 
clinical reports. We then vary a single parameter at a time to establish the range that 
causes little change in the output. This will allow a determination of those parameters 
whose values have to be measured with greater accuracy. 

Our model includes the following parameters (default values in brackets): 
InoculationEfficiency (IE=0.9): the probability that a carrier mosquito will infect a 

bitten healthy human. This probability includes the probability of the inverse process. 
The probability of an uninfected human becoming infected is thus the number of 
biting infectious mosquitoes, multiplied by IE.  
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Host infection survival rate (0.9716). This is the daily probability that an infected 
human will not clear his/her infection. The default value reflects a probability of 
roughly 90% of an individual clearing an untreated infection within 80 days. This is 
consistent with reports of malariotherapy. 

As oviposition is dependent on the existence of waterbodies, and An. gambiae 
usually oviposit in temporary waterbodies, such as puddles, hoofprints etc., 
oviposition rate is related to recent rainfall. It is, in principle, also related through 
evapotranspiration to temperature and humidity, and to soil type by absorption. Due to 
lack of data on the suitable water-balance dynamics we simplified the relation to a 
fixed ratio between per-mosquito per cycle oviposition to the decadal rainfall by rate 
constant  (1.0). This will be improved when analysis of measurements being 
performed now becomes available. 

The Detinova model attributes different values of the gonotrophic cycle degree-day 
values to different humidity conditions. As we found the humidity value in our dataset 
was not reliable, we chose rainfall to be a surrogate for humidity. We used a single 
value as a threshold for transition between humid and dry conditions. In Detinova’s 
data there are actually three different ranges of humidity, but as the intermediate and 
dry values are almost identical, we have elected using only two, the humid and dry 
conditions. The transition between them serves as a threshold (5mm). 

One of the early discoveries in the modelling of malaria was the problem of the 
low probability of survival of mosquitoes (and hence infections) from year to year in a 
region of seasonal transmission. A long dry season, long hot or cold seasons can all 
eliminate the mosquito populations. There have been numerous discoveries which 
allow for the mosquito survival, either by aestivation/over-wintering in secluded 
hibernation locations, by delay in the maturation of eggs or mosquito long-range 
migration. All these processes may contribute to the re-establishment of malaria 
transmission. The continuation of infection dynamics in a numerical setting, when 
infected mosquitoes are not surviving, is enabled by the continuous influx of new 
infected mosquitoes, presumed waking from a period of aestivation, or new migrants. 
They are released into the population at a constant rate (1.00/10 days). This number is 
far too small to sustain malaria, except when favourable conditions for mosquito 
viability prevail. 

Another source of reinstallation of the disease could be the arrival of new sick 
patients into the population (transient workers, soldiers etc.). To model this value we 
allow for the import of a set number (0.0) of new cases per 100 persons in the 
population, every 4 days.

Mosquitoes may bite both humans and cattle. This tendency is a combination of the 
relative abundance of cattle and the strain specific tendency. This value (0.5) is 
measured entomologically. As far as the model is concerned, these are wasted bites, 
which do not allow transmission in either direction, as cattle are not a host for 
falciparum.

As a coarse evaluation of the possible effects of climate change we varied the 
temperature by raising and lowering the reported temperature. We experimented with 
temperature changes in 1oC step from –5oC to +5 oC from the reanalysis data. In 
addition we experimented with changing rainfall patterns by multiplying the rainfall 
values by a constant varying from 0.5 to 1.5 of the reanalysis daily rainfall. 

To compare with the numerically varied weather, we have used also spatial 
variation, comparing with data from adjacent grid points (17.5oS and 
20.0oS, 22.5oE, 25.0oE, 27.5oE and 30.0oE).
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The purpose is to establish whether projected climate change is greater or less than 
spatial variation, as a determinant of malaria outbreaks.  

The data is being reported graphically here. A form of numerical analysis will be 
developed in the future. 

Results

Early 1996 and 1997 were epidemic years in the region, as a result of the heavy 
rains in the rain season beginning November. We would thus expect of the model 
prediction of high incidence. This we do indeed find in almost all runs as displayed. 
We would like to compare however the behaviour as determined by the various values 
of the parameters. To begin with, in Figure 4 we compare the Lindsay-Birley and 
Martens models. During rainy years the Martens-model incidence was usually 
proportional to the annual rainfall. In drier years, the model could not show support 
for incidence. The dependence on rainfall is far less clear on the various realizations 
of the LB model. This seems to be true for all values of the gonotrophic-cycle survival 
rate. In Figure 5 (see Colour pages elsewhere in this book) we compare the values 
given by the model using different inoculation-efficiency parameters. Perhaps not 
surprisingly, when the number of mosquitoes is very large (1996-9), the precise value 
is less important, but, when there are fewer mosquitoes (years 2000 and early 2001), 
transmission is highly dependent on the efficiency of the individual vector.

Figure 4. Comparison of Martens and Birley-Lindsay models of predicted incidence for 
various average temperature values. Different values of gonotrophic-cycle survival are 
simulated 

In Figure 6 we examine the importance of the interaction between mosquito and 
environment. The gonotrophic-cycle length is dependent on humidity. The major 
importance of this parameter is in years in which the rainfall is heavy and with a 
double peak (1996-7 and 2000), requiring a continuation of mosquito population 
between rainy seasons. 
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In Figure 7 (see Colour pages elsewhere in this book) we compare the importance 
of the immune system to the dynamics of incidence. For years in which infection 
levels are extremely high (1999) the entire population is constantly infected, 
independent of the clearance rate, but in other years the clearance rate is a major 
determinant of the incidence rate, as the prevalence, and hence the mosquito infection 
rate is dependent on this parameter. 

In Figure 8 we display incidence according to the model when varying the 
temperature by a constant shift, in this case a warming or a cooling by 1oC. 

In Figure 9 we present the variation of the incidence pattern for the region 17.5-
20oS by 22.5-30.0 oE, for gridpoints at 2.5o spacing. 

Figure 6. Sensitivity of simulated incidence to variation in rain for 17.5oS 25.0oE using ERA-
40 weather. Calculated rainfall is multiplied by a constant (0.8, 1, 1.2) for the entire 
simulation 

Figure 8. Sensitivity of simulated incidence to variation in temperature for 17.5oS 25.0oE
using ERA-40 weather. Calculated temperature varied by an additive constant (-2, 0,2 ,4) for 
the entire simulation 
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Figure 9. Variation of simulated incidence between ERA-40 grid-points. Solid line: mean of 8 
grid-points. Dotted lines: mean ± standard deviation 

Discussion

It seems that the complexity of the model entails the combination of many separate 
sub-models, each with its own parameterization. This process is obviously far from 
desirable, as the numerous parameters could potentially create larger variation than 
the weather driving force, and indeed the output of a forecast by the malaria model is 
dependent on the choice of model parameters. Nevertheless, if the model parameters 
can be optimally set, the variation is limited, and the influence of weather will be 
predictable. When this obstacle has been surmounted, we may utilize weather 
forecasts for malaria prediction. 

This modelling process has a few benefits, as opposed to other methodologies, 
such as a scenario-based, statistical modelling method. The first is the ability to apply 
the method in cases substantially different from those tested. This is a special boon 
when attempting to establish the importance of changing climate or of the influence of 
extraordinary weather conditions (such as after heavy rains). Another benefit of the 
mathematical-biological methodology is the ability to simulate changes to 
entomological, parasitological or immunological aspects of the system. Thus such 
methods are suitable for calculating the impact of intervention policies, and thus for 
weighting the costs of alternative health policies, such as deciding on the cost-
effectiveness of the utilization of spraying. The impact of the increased malaria 
prevalence in a highland area affected by global warming may be mitigated by the 
increased immune status. A mathematical model can readily apply such processes. 

There are two possible methodologies in the usage of complex mathematical 
models, which are actually complimentary. One approach is to analyse the influence 
of a single variable (or possibly a combination) in the model output. Then we may 
compare the output of the entire model with clinical malaria reports. The alternative is 
to form a set of small experiments, each testing a single factor, in comparison with a 



Hoshen and Morse 

49

standard set of values. This latter was the alternative we chose. A set of experiments 
to establish the values of the parameters in a single setting is under way. 

We find that the values of the parameters are indeed causing sizable variations in 
the heights and shapes of the peaks. We do find, however, that the seasonality is 
unchanged with variations in parameters. Weather is still the principal driver. 

Weather variations can increase or reduce inter-annual variation. The fairly low 
temperatures at the beginning of year 2000 did not allow the development of a sizable 
incidence that year, independent of variations in rainfall. However, an increase of 2oC
is sufficient to result in an epidemic year. Variation of rainfall did not create as large 
variations in incidence as did temperature variation, with a clear exception in year 
2001, where the first peak of the dual-peak epidemic was highly sensitive to rainfall. 
This leads us to understand that in this region, in which malaria is driven by the rainy 
season, the actual size of the epidemic is mainly determined by temperature, as the 
temperature is close to the development threshold. 

Malaria is an environmentally driven disease and as such is highly dependent on 
variation in local conditions. This can be seen when we compare the conditions across 
Southern Africa. The inter-grid point variation in incidence is very large, as the 
standard variation is as large as the mean. Nevertheless, the seasonal pattern of all 
locations is similar. In addition, the interannual variation of the mean is similar to that 
of the inter-gridpoint standard deviation, reflecting the general persistence of 
interannual variability over the large region. Thus we find that the epidemic structure 
may be understood using only macro-scale information. This is quite important as 
climate change models work only at this scale. 

We may hence conclude that the interannual variation of malaria incidence in 
Southern Africa is determined by both rainfall and temperature variation. The 
variation of temperature is of greatest importance. Thus in the case of a uniform 
heating of the region, we could expect the area to move from its present epidemic 
structure to seasonal endemicity. Unless rainfall patterns change considerably, there 
will be no significant change in the seasonal structure of the epidemic seasons. 

Conclusion

In this short report we have presented a weather-based model of malaria 
transmission. We have investigated the sensitivity of the model to variations in both 
parameter values and weather. We have demonstrated that the interannual variation is 
determined by both temperature and rainfall, and that this dependence is robust to 
variations in parameter values. We have shown that in spite of inter-gridpoint 
variations, the model gives time patterns which are representative of whole regions, 
allowing it to serve as a basis for large-scale climate models. We have also shown that 
small changes in baseline temperatures will significantly increase the incidence in 
some otherwise non-epidemic years, an effect not found with rainfall variations. 
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