Informatie voor professionals in voedsel en groen

Informatie voor professionals in voedsel en groen

  • externe gebruiker (Let opwarning)
  • Log in as
  • Over Groenekennis


    Groenekennis - Informatie voor professionals in voedsel en groen

    Groenekennis bevat artikelen uit vaktijdschriften, rapporten, video’s, presentaties, posters en websites op het gebied van landbouw, visserij, groene ruimte en voeding. Groenekennis wordt dagelijks bijgewerkt en bevat ongeveer 500.000 bronnen.

    Groenekennis is de globale view over diverse deelbestanden. Groenekennis is gevuld met alle informatie uit Groen Kennisnet, de Hydrotheek, Tuinpad, IB archief, ARTIK, bioKennis, Kennisbank Plantaardige bronnen, Kennisbank Zeldzame landbouwhuisdieren en afgesloten documentatiebestanden zoals Land Bodem Water en Consumenten- en huishoudstudies.

    Groen Kennisnet is een zeer belangrijk onderdeel van Groenekennis. De doelstelling van Groen Kennisnet is kennis delen op het gebied van Voedsel en Groen te bevorderen en te faciliteren voor een breed publiek.

    Bronnen in Groenekennis kunnen direct opgevraagd worden via een geavanceerde zoekmachine met een 'google-achtige' interface. Met filters kan ingezoomd worden op diverse aspecten, zoals Trefwoord, Collectie, Jaar en Auteur. Bovendien biedt Groenekennis gebruikers de mogelijkheid om via de E-mail geattendeerd te worden op aanvullingen in specifieke vakgebieden.
    De Tijdschriftenlijst biedt een overzicht van tijdschriften waaruit de artikelen voor Groenekennis worden geselecteerd. Door te klikken op een titel krijgt u alle artikelen uit dat tijdschrift in de Groenekennis database getoond.
    Zoeken op kaart biedt een geografische ingang op de beschikbare publicaties over de binnen dit bestand onderscheiden gebieden.

    Groenekennis is onderdeel van het bibliotheeksysteem van WUR. Praktijkgerichte publicaties en rapporten van WUR komen daardoor automatisch beschikbaar. Daarnaast wordt de database doorlopend gevuld met voor het groen onderwijs bruikbare bronnen en artikelen, video’s en websites. Het percentage online is de laatste jaren gegroeid tot tweederde van de totale aanwas per jaar. Dit percentage groeit nog steeds.

    Over
Record nummer 2064135
Titel artikel Model predicted low-level cloud parameters. 2. Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns
Auteur(s) Schröder, M. ; Lipzig, N.P.M. van ; Ament, F. ; Chaboureau, J.-P. ; Crewell, S. ; Fischer, J. ; Matthias, V. ; Meijgaard, E. van ; Walther, A. ; Willén, U.
Tijdschrifttitel Atmospheric research
Deel(Jaar)Nummer 82(2006)1-2
Paginering 83 - 101
Online full text
Trefwoorden (cab) wolken / meteorologische waarnemingen / remote sensing / satellieten / modellen
Rubrieken Meteorologie (algemeen)
Publicatie type Wetenschappelijk artikel
Taal Engels
Toelichting (Engels) A pressing task in numerical weather prediction and climate modelling is the evaluation of modelled cloud fields. Recent progress in spatial and temporal resolution of satellite remote sensing increases the potential of such evaluation efforts. This paper presents new methodologies to compare satellite remote sensing observations of clouds and output of atmospheric models and demonstrates their usefulness for evaluation. The comparison is carried out for two MODerate resolution Imaging Spectrometer (MODIS) scenes from the BALTEX Bridge Campaigns. Both scenes are characterised by low-level clouds with a substantial amount of liquid water. Cloud cover and cloud optical thickness of five different models, LM, Méso-NH, MM5 (non-hydrostatic models), RACMO2, and RCA (regional climate models) as well as corresponding retrievals from high resolution remote sensing observations of MODIS onboard the Terra satellite form the basis of a statistical analysis to compare the data sets. With the newly introduced patchiness parameters it is possible to separate differences between the two scenes on the one hand and between the models and the satellite on the other hand. We further introduce a new approach to spatially aggregate cloud optical thickness. Generally the models overestimate cloud optical thickness which can in part be ascribed to the lack of subgrid-scale variability. However, LM underestimates the frequency of occurrence of cloud optical thickness at values around 25. Furthermore, we compare the standard operational output of the non-hydrostatic models to simulations of the same models including parameterised shallow convection. However, clear improvements in the representation of low-level clouds are not found for these models. A change of the coefficients for autoconversion in RCA shows that LWP and precipitation strongly depend on this parameter. Refined vertical resolution, implemented in RACMO2, leads to a better agreement between model and satellite but still leaves room for further improvements. In general, this study reveals deficiencies of the models in representing low-level clouds, in particular for a stratiform cloud.
Reacties
Er zijn nog geen reacties. U kunt de eerste schrijven!
Schrijf een reactie
 

To support researchers to publish their research Open Access, deals have been negotiated with various publishers. Depending on the deal, a discount is provided for the author on the Article Processing Charges that need to be paid by the author to publish an article Open Access. A discount of 100% means that (after approval) the author does not have to pay Article Processing Charges.

For the approval of an Open Access deal for an article, the corresponding author of this article must be affiliated with Wageningen University & Research.

U moet eerst inloggen om gebruik te maken van deze service. Login als Wageningen University & Research user of guest user rechtsboven op deze pagina.