Informatie voor professionals in voedsel en groen

Informatie voor professionals in voedsel en groen

  • externe gebruiker (Let opwarning)
  • Log in as
  • Over Groenekennis


    Groenekennis - Informatie voor professionals in voedsel en groen

    Groenekennis bevat artikelen uit vaktijdschriften, rapporten, video’s, presentaties, posters en websites op het gebied van landbouw, visserij, groene ruimte en voeding. Groenekennis wordt dagelijks bijgewerkt en bevat ongeveer 500.000 bronnen.

    Groenekennis is de globale view over diverse deelbestanden. Groenekennis is gevuld met alle informatie uit Groen Kennisnet, de Hydrotheek, Tuinpad, IB archief, ARTIK, bioKennis, Kennisbank Plantaardige bronnen, Kennisbank Zeldzame landbouwhuisdieren en afgesloten documentatiebestanden zoals Land Bodem Water en Consumenten- en huishoudstudies.

    Groen Kennisnet is een zeer belangrijk onderdeel van Groenekennis. De doelstelling van Groen Kennisnet is kennis delen op het gebied van Voedsel en Groen te bevorderen en te faciliteren voor een breed publiek.

    Bronnen in Groenekennis kunnen direct opgevraagd worden via een geavanceerde zoekmachine met een 'google-achtige' interface. Met filters kan ingezoomd worden op diverse aspecten, zoals Trefwoord, Collectie, Jaar en Auteur. Bovendien biedt Groenekennis gebruikers de mogelijkheid om via de E-mail geattendeerd te worden op aanvullingen in specifieke vakgebieden.
    De Tijdschriftenlijst biedt een overzicht van tijdschriften waaruit de artikelen voor Groenekennis worden geselecteerd. Door te klikken op een titel krijgt u alle artikelen uit dat tijdschrift in de Groenekennis database getoond.
    Zoeken op kaart biedt een geografische ingang op de beschikbare publicaties over de binnen dit bestand onderscheiden gebieden.

    Groenekennis is onderdeel van het bibliotheeksysteem van WUR. Praktijkgerichte publicaties en rapporten van WUR komen daardoor automatisch beschikbaar. Daarnaast wordt de database doorlopend gevuld met voor het groen onderwijs bruikbare bronnen en artikelen, video’s en websites. Het percentage online is de laatste jaren gegroeid tot tweederde van de totale aanwas per jaar. Dit percentage groeit nog steeds.

    Over
Record nummer 2103384
Titel Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism
toon extra info.
Myrthe S. Gilbert
Auteur(s) Gilbert, Myrthe S. (dissertant)
Uitgever Wageningen : Wageningen University
Jaar van uitgave 2015
Pagina's 171 pages figures, diagrams
Pagina's 1 online resource (PDF, 171 pages) figures, diagrams
Annotatie(s) Includes bibliographic references. - With summary in English
ISBN 9789462576032; 9462576033
Tutor(s) Hendriks, Prof. Dr. W.H. ; Gerrits, Dr. W.J.J. ; Schols, Dr. H.A.
Promotiedatum 2015-12-18
Proefschrift nr. 6253
Samenvatting door auteur toon abstract

Summary PhD thesis Myrthe S. Gilbert

Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolism

Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves originates from the MR. Calf MR contains 40 to 50% lactose, originating from whey, a by-product from cheese production. High and strongly fluctuating dairy prices are a major economic incentive to replace lactose from the calf MR by alternative energy sources. The objective of this thesis was to study the effects of replacing lactose from calf MR on nutrient digestion and fermentation and post-absorptive metabolism.

In Chapter 2 and 3, four starch products (SP) were evaluated for replacing lactose. The four SP differed in size and branching, and consequently required different ratios of starch-degrading enzymes for their complete hydrolysis to glucose. Gelatinized starch required α-amylase and (iso)maltase; maltodextrin required (iso)maltase and α-amylase; maltodextrin with α-1,6-branching required isomaltase, maltase and α-amylase and maltose required maltase. In Chapter 2, adaptation to these SP was assessed during 14 weeks, using a within-animal titration study. Forty male Holstein-Friesian calves (n = 8 per treatment) were assigned to either a lactose control MR or one of four titration strategies, each testing the stepwise exchange of lactose for one of the SP. For control calves, fecal dry matter (DM) content and fecal pH did not change over time. The response in fecal DM content and fecal pH in time did not differ between SP treatments and decreased linearly with 0.57% and 0.32 per week, respectively, where one week corresponded to an increase in SP inclusion of 3%. This indicates that the capacity for starch digestion was already exceeded at low inclusion levels, resulting in SP fermentation. All SP required maltase to achieve complete hydrolysis to glucose and it was, therefore, suggested that maltase is the rate-limiting enzyme in starch digestion in milk-fed calves.

Following the titration, a fixed inclusion level of 18% of the SP in the MR was applied. Effects on starch-degrading enzyme activity, nutrient disappearance, SP fermentation and jugular glucose appearance were measured (Chapter 3). Lactase activity in the brush border was high in the proximal small intestine of all calves, resulting in a high apparent ileal disappearance of lactose (≥ 99% of intake). Maltase and isomaltase activities in the brush border were not increased for any of the SP treatments. Luminal α-amylase activity was lower in the proximal small intestine but greater in the distal small intestine of SP-fed calves compared to control calves. This amylase activity in the distal small intestine of SP-fed calves might have been of microbial origin. Apparent SP disappearance did not differ between SP treatments. The difference between apparent ileal (62%) and total tract (99%) SP disappearance indicated substantial SP fermentation in the large intestine (37% of intake). In addition, total tract SP fermentation was quantified using fecal 13C excretion which originated from the naturally 13C-enriched corn SP. Total tract SP fermentation averaged 89% of intake, regardless of SP treatment. MR leaking into the reticulorumen was measured as the recovery of Cr in the reticulorumen at slaughter after feeding MR pulse-dosed with Cr 4h prior to slaughter. MR leaking into the reticulorumen averaged 11% for SP-fed calves. By difference, this leaves 41% of the SP intake fermented in the small intestine. This coincided with increased fecal nitrogen (N) and DM losses for SP-fed calves. However, apparent total tract crude fat disappearance tended to increase when replacing lactose with SP. The substantial SP fermentation indicates that only 10% of the SP intake was enzymatically hydrolyzed and absorbed as glucose. This was in agreement with the marginal increase in 13C enrichment in peripheral plasma glucose after feeding naturally 13C-enriched gelatinized starch and maltose, compared to a clear increase after feeding naturally 13C-enriched lactose to control calves. It was concluded that fermentation, rather than enzymatic digestion, is the main reason for small intestinal starch disappearance in milk-fed calves. The expected decrease in growth performance with such extensive SP fermentation is partially compensated by the greater crude fat digestion and possibly by a reduced urinary glucose excretion when replacing lactose with SP.

Glucose, fructose and glycerol do not require enzymatic hydrolysis and can be absorbed directly from the small intestine. However, these lactose replacers might differentially affect glucose and insulin metabolism and with that energy partitioning. The effects of partly replacing lactose with glucose, fructose or glycerol on energy and N partitioning and glucose homeostasis and insulin sensitivity were, therefore, studied in Chapter 4 and 5. Forty male Holstein-Friesian calves either received a lactose control MR or a MR in which one third of the lactose was replaced with glucose, fructose or glycerol (n = 10 per treatment). Energy and N retention were not affected by MR composition. Fructose absorption from the small intestine was incomplete resulting in fructose fermentation. This resulted in fecal losses of DM, energy and N and the lowest numerical energy and N retention for fructose-fed calves. Postprandial plasma concentrations of glucose exceeded the renal threshold for glucose in glucose-fed calves and control calves, which resulted in urinary glucose excretion. Glycerol was likely excreted with the urine of glycerol-fed calves. Oxidation of glucose, fructose and glycerol was quantified by feeding a single dose of [U-13C]glucose, [U-13C]fructose or [U-13C]glycerol with the MR and subsequently measuring 13CO2 production. Oxidation of lactose replacers did not differ between lactose replacers and averaged 72% of intake. However, the time at which the maximum rate of oxidation was reached was delayed for fructose-fed compared to glucose-fed and glycerol-fed calves, indicating that fructose was converted into other substrates before being oxidized. Conversion of fructose and glycerol into glucose was confirmed by an increase in 13C enrichment of peripheral plasma glucose after feeding [U-13C]fructose and [U-13C]glycerol, respectively. Insulin sensitivity did not differ between MR treatments, but was already low at the start of the experiment at 15 weeks of age and remained low throughout the experiment. It was concluded that glucose and glycerol can replace one third of the lactose from the calf MR, but that inclusion of fructose should be lower to prevent incomplete absorption from the small intestine.

In literature and the studies in this thesis, high inter-individual variation in growth performance was found in veal calves. The experiment described in Chapter 6 was, therefore, designed to assess the predictability of later life growth performance by charactering calves in early life. In addition, it was examined whether the ability of calves to cope with MR in which lactose is partially replaced by alternative energy sources can be predicted. From 2 to 11 weeks of age, male Holstein-Friesian calves were fed a lactose control MR and solid feed according to a practical feeding scheme and were characterized individually using targeted challenges related to feeding motivation, digestion, post-absorptive metabolism, immunology, behavior and stress. Based on the results in Chapter 4, a combination of glucose, fructose and glycerol in a 2:1:2 ratio was used to replace half of the lactose from the MR (GFG). From 11 to 27 weeks of age, calves received a lactose control MR or the GFG MR (n = 65 per treatment). Growth performance from 11 to 27 weeks of age tended to be lower for GFG-fed than for control calves (-25 g/d). Measurements in early life explained 12% of the variation in growth performance in later life. However, this was mainly related to variation in solid feed refusals. When growth performance was adjusted to equal solid feed intake, only 4% of the variation in standardized growth performance in later life, reflecting feed efficiency, could be explained by early life measurements. This indicates that > 95% of the variation in feed efficiency in later life could not be explained by early life characterization. It is hypothesized that variation in health status explains substantial variation in feed efficiency in veal calves. Significant relations between fasting plasma glucose concentrations, fecal dry matter and fecal pH in early life and feed efficiency in later life depended on MR composition. These measurements are, therefore, potential tools for screening calves in early life on their ability to cope with a MR in which half of the lactose is replaced by glucose, fructose and glycerol (in a 2:1:2 ratio).

The studies reported in this thesis demonstrate that glycerol, glucose and a combination of glucose, fructose and glycerol in a 2:1:2 ratio are promising lactose replacers. The effects of replacing lactose by other carbohydrate or energy sources described in this thesis are required to evaluate the potential of lactose replacers for inclusion in calf milk replacers and provide input for feed evaluation for calves and ruminants.

 

Online full text
Op papier Haal het document, vind aanverwante informatie of gebruik andere SFX-diensten
Trefwoorden (cab) vleeskalveren / lactose / kunstmelk / polysacchariden / glucose / fructose / glycerol / zetmeelvertering / metabolisme / fermentatie / kalvervoeding / diervoeding / voedingsfysiologie
Rubrieken Rundvee / Fysiologie van de diervoeding
Publicatie type Proefschrift
Taal Engels
Reacties
Er zijn nog geen reacties. U kunt de eerste schrijven!
Schrijf een reactie
 

To support researchers to publish their research Open Access, deals have been negotiated with various publishers. Depending on the deal, a discount is provided for the author on the Article Processing Charges that need to be paid by the author to publish an article Open Access. A discount of 100% means that (after approval) the author does not have to pay Article Processing Charges.

For the approval of an Open Access deal for an article, the corresponding author of this article must be affiliated with Wageningen University & Research.

U moet eerst inloggen om gebruik te maken van deze service. Login als Wageningen University & Research user of guest user rechtsboven op deze pagina.