WUR Journal browser

WUR Journal browser

  • external user (warningwarning)
  • Log in as
  • The Journal Browser provides a list of more than 30,000 journals. It can be consulted by authors who wish to select a journal for publishing their manuscript Open Access. The information in this list is aggregated from several sources on a regular basis:

    • A list of journals for which the Association of Universities in the Netherlands (VSNU) has made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of Dutch universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs).
    • A list of journals covered by the Journal Citation Reports.
    • A list of journals covered by Scopus.
    • Journals indexed in the Directory of Open Access Journals (DOAJ).
    • Lists of journals for which specific Dutch universities have made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of these universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs). Depending on the university from which the Journal Browser is consulted, this information is shown.
    • Additional data on citations made to journals, in articles published by staff from a specific Dutch university, that are made available by that university. Depending on the university from which the Journal Browser is consulted, this information is shown.

    In the Journal Browser, a search box can be used to look up journals on certain subjects. The terms entered in this box are used to search the journal titles and other metadata (e.g. keywords).

    After having selected journals by subject, it is possible to apply additional filters. These concern no/full costs and discounts for Open Access publishing, support on Open Access publishing in journals, and the quartile to which the journal’s impact factor belongs.

    When one selects a journal in the Journal Browser, the following information may be presented:

    • General information about the selected journal such as title and ISSNs, together with a link to the journal’s website.
    • APC discount that holds for the selected journal if it is part of an Open Access deal.
    • Impact measures for the selected journal from Journal Citation Reports or Scopus. The impact measures that are shown may vary, depending on the university from which the Journal Browser is consulted. For some universities, the number of citations made to the selected journal (in articles published by staff from that university) is also shown.
    • Information from Sherpa/Romeo on the conditions under which articles from the selected journal may be made available via Green Open Access.
    • A listing of articles recently published in the selected journal.
    • For some universities, information is available on what journals have been co-cited most frequently together with the selected journal (in articles published by staff from these universities). When available, this information is presented under ‘similar journals’.

Applied and Environmental Microbiology

American Society for Microbiology


ISSN: 0099-2240 (1070-6291, 1098-5336)
Biotechnology & Applied Microbiology - Microbiology - Food Science - Ecology - Applied Microbiology and Biotechnology - Biotechnology
APC costs unknown

Recent articles

1 show abstract

Article URL: http://aem.asm.org/cgi/content/short/85/24/masthead-85-24?rss=1
Citation: Vol 85 No. 24 (2019) pp masthead-8 masthead-8
Publication Date: 2019-11-27T08:00:49-08:00
Journal: Applied and Environmental Microbiology
2 show abstract
A number of anaerobic ciliates, unicellular eukaryotes, intracellularly possess methanogenic archaea and bacteria as symbiotic partners. Although this tripartite relationship is of interest in terms of the fact that each participant is from a different domain, the difficulty in culture and maintenance of those host species with symbiotic partners has disturbed both ecological and functional studies so far. In this study, we obtained a stable culture of a small anaerobic scuticociliate, strain GW7. By transmission electron microscopic observation and fluorescent in situ hybridization with domain-specific probes, we demonstrate that GW7 possesses both archaeal and bacterial endosymbionts in its cytoplasm. These endosymbionts are in dependently associated with hydrogenosomes, which are organelle producing hydrogen and ATP under anaerobic conditions. Clone library analyses targeting prokaryotic 16S rRNA genes, fluorescent in situ hybridization with endosymbiont-specific probes, and molecular phylogenetic analyses revealed the phylogenetic affiliations and intracellular localizations of these endosymbionts. The endosymbiotic archaeon is a methanogen belonging to the genus Methanoregula (order Methanomicrobiales); a member of this genus has previously been described as the endosymbiont of an anaerobic ciliate from the genus Metopus (class Armophorea), which is only distantly related to strain GW7 (class Oligohymenophorea). The endosymbiotic bacterium belongs to the family Holosporaceae of the class Alphaproteobacteria, which also comprises several endosymbionts of various aerobic ciliates. For this endosymbiotic bacterium, we propose a novel candidate genus and species, "Candidatus Hydrogenosomobacter endosymbioticus."

IMPORTANCE Tripartite symbioses between anaerobic ciliated protists and their intracellular archaeal and bacterial symbionts are not uncommon, but most reports have been based mainly on microscopic observations. Deeper insights into the function, ecology, and evolution of these fascinating symbioses involving partners from all three domains of life have been hampered by the difficulties of culturing anaerobic ciliates in the laboratory and the frequent loss of their prokaryotic partners during long-term cultivation. In the present study, we report the isolation of an anaerobic scuticociliate, strain GW7, which has been stably maintained in our laboratory for more than 3 years without losing either of its endosymbionts. Unexpectedly, molecular characterization of the endosymbionts revealed that the bacterial partner of GW7 is phylogenetically related to intranuclear endosymbionts of aerobic ciliates. This strain will enable future genomic, transcriptomic, and proteomic analyses of the interactions in this tripartite symbiosis and a comparison with endosymbioses in aerobic ciliates.
3 show abstract
Pyrroloquinoline quinone (PQQ) is an ortho-quinone cofactor of several prokaryotic oxidases. Widely available in the diet and necessary for the correct growth of mice, PQQ has been suspected to be a vitamin for eukaryotes. However, no PQQ-dependent eukaryotic enzyme had been identified to use the PQQ until 2014, when a basidiomycete enzyme catalyzing saccharide dehydrogenation using PQQ as a cofactor was characterized and served to define auxiliary activity family 12 (AA12). Here we report the biochemical characterization of the AA12 enzyme encoded by the genome of the ascomycete Trichoderma reesei (TrAA12). Surprisingly, only weak activity against uncommon carbohydrates like l-fucose or d-arabinose was measured. The three-dimensional structure of TrAA12 reveals important similarities with bacterial soluble glucose dehydrogenases (sGDH). The enzymatic characterization and the structure solved in the presence of calcium confirm the importance of this ion in catalysis, as observed for sGDH. The structural characterization of TrAA12 was completed by modeling PQQ and l-fucose in the enzyme active site. Based on these results, the AA12 family of enzymes is likely to have a catalytic mechanism close to that of bacterial sGDH.

IMPORTANCE Pyrroloquinoline quinone (PQQ) is an important cofactor synthesized by prokaryotes and involved in enzymatic alcohol and sugar oxidation. In eukaryotes, the benefit of PQQ as a vitamin has been suggested but never proved. Recently, the first eukaryotic enzyme using PQQ was characterized in the basidiomycete Coprinopsis cinerea, demonstrating that fungi are able to use PQQ as an enzyme cofactor. This discovery led to the classification of the fungal PQQ-dependent enzymes in auxiliary activity family 12 (AA12) of the Carbohydrate-Active Enzymes (CAZy) database (www.cazy.org) classification. In the present paper, we report on the characterization of the ascomycete AA12 enzyme from Trichoderma reesei (TrAA12). Our enzymatic and phylogenetic results show divergence with the only other member of the family characterized, that from the basidiomycete Coprinopsis cinerea. The crystallographic structure of TrAA12 shows similarities to the global active-site architecture of bacterial glucose dehydrogenases, suggesting a common evolution between the two families.
4 show abstract
Transcriptional regulation of cellulolytic and xylolytic genes in ascomycete fungi is controlled by specific carbon sources in different external environments. Here, comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR), or WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of the differentially expressed genes (DEGs) were involved in metabolism, specifically, carbohydrate metabolism. Of the DEGs, the basic core carbohydrate-active enzyme-encoding genes which responded to the plant biomass resources were identified in P. oxalicum, and their transcriptional levels changed to various extents depending on the different carbon sources. Moreover, this study found that three deletion mutants of genes encoding putative transcription factors showed significant alterations in filter paper cellulase production compared with that of a parental P. oxalicum strain with a deletion of Ku70 (PoxKu70 strain) when grown on WR under SSF. Importantly, the PoxAtf1 mutant (with a deletion of P. oxalicum Atf1, also called POX03016) displayed 46.1 to 183.2% more cellulase and xylanase production than a PoxKu70 mutant after 2 days of growth on WR. RNA sequencing and quantitative reverse transcription-PCR revealed that PoxAtf1 dynamically regulated the expression of major cellulase and xylanase genes under SSF. PoxAtf1 bound to the promoter regions of the key cellulase and xylanase genes in vitro. This study provides novel insights into the regulatory mechanism of fungal cellulase and xylanase gene expression under SSF.

IMPORTANCE The transition to a more environmentally friendly economy encourages studies involving the high-value-added utilization of lignocellulosic biomass. Solid-state fermentation (SSF), that simulates the natural habitat of soil microorganisms, is used for a variety of applications such as biomass biorefinery. Prior to the current study, our understanding of genome-wide gene expression and of the regulation of gene expression of lignocellulose-degrading enzymes in ascomycete fungi during SSF was limited. Here, we employed RNA sequencing and genetic analyses to investigate transcriptomes of Penicillium oxalicum strain EU2101 cultured on medium containing different carbon sources and to identify and characterize transcription factors for regulating the expression of cellulase and xylanase genes during SSF. The results generated will provide novel insights into genetic engineering of filamentous fungi to further increase enzyme production.
5 show abstract
Campylobacter jejuni, a leading cause of gastroenteritis worldwide, has been frequently isolated from recreational rivers and streams in New Zealand, yet the public health significance of this is unknown. This study uses molecular tools to improve our understanding of the epidemiology and sources of Campylobacter in recreational waterways, with a view to preventing human infection. Epidemiological and microbiological data were collected between 2005 and 2009 from six high-use recreational waterways in the Manawatu-Wanganui region of the North Island. Campylobacter spp. and C. jejuni were isolated from 33.2% and 20.4% of 509 samples, respectively. Isolation of Campylobacter was observed in both low and high river flows. After adjusting for the confounding effects of river flow, there was a significantly higher likelihood of isolating Campylobacter in the winter month of June compared to January. A high diversity of C. jejuni multilocus sequence types was seen, with the most commonly isolated being the water rail-associated ST-2381 (19/91 isolates [20.9%]), ST-1225 (8/91 isolates [8.8%]), and ST-45 (6/91 isolates [6.6%]). The ST-2381 was found in all rivers, while the most commonly isolated ST from human cases in New Zealand, the poultry-associated strain ST-474, was isolated only in one river. Although the majority of Campylobacter sequence types identified in river water were strains associated with wild birds that are rarely associated with human disease, poultry and ruminant-associated Campylobacter strains that are found in human infection were also identified and could present a public health risk.

IMPORTANCE In 2016, there was a large-scale waterborne outbreak of campylobacteriosis in New Zealand, which was estimated to have affected over 5,000 people. This highlighted the need for a greater understanding of the sources of contamination of both surface and groundwater and risks associated with exposure to both drinking and recreational water. This study reports the prevalence and population structure of Campylobacter jejuni in six recreational waters of the Manawatu-Wanganui region of New Zealand and models the relationship between Campylobacter spp. and ruminant-associated Campylobacter and the parameters "sites," "months," and "river flow." Here, we demonstrate that both low and high river flows, month of the year, and recreational sites could influence the Campylobacter isolation from recreational waters. The presence of genotypes associated with human infection allowed us to describe potential risks associated with recreational waters.
6 show abstract
Members of the epsilonproteobacterial genus Arcobacter have been identified to be potentially important sulfide oxidizers in marine coastal, seep, and stratified basin environments. In the highly productive upwelling waters off the coast of Peru, Arcobacter cells comprised 3 to 25% of the total microbial community at a near-shore station where sulfide concentrations exceeded 20 μM in bottom waters. From the chemocline where the Arcobacter population exceeded 106 cells ml–1 and where high rates of denitrification (up to 6.5 ± 0.4 μM N day–1) and dark carbon fixation (2.8 ± 0.2 μM C day–1) were measured, we isolated a previously uncultivated Arcobacter species, Arcobacter peruensis sp. nov. (BCCM LMG-31510). Genomic analysis showed that A. peruensis possesses genes encoding sulfide oxidation and denitrification pathways but lacks the ability to fix CO2 via autotrophic carbon fixation pathways. Genes encoding transporters for organic carbon compounds, however, were present in the A. peruensis genome. Physiological experiments demonstrated that A. peruensis grew best on a mix of sulfide, nitrate, and acetate. Isotope labeling experiments further verified that A. peruensis completely reduced nitrate to N2 and assimilated acetate but did not fix CO2, thus coupling heterotrophic growth to sulfide oxidation and denitrification. Single-cell nanoscale secondary ion mass spectrometry analysis of samples taken from shipboard isotope labeling experiments also confirmed that the Arcobacter population in situ did not substantially fix CO2. The efficient growth yield associated with the chemolithoheterotrophic metabolism of A. peruensis may allow this Arcobacter species to rapidly bloom in eutrophic and sulfide-rich waters off the coast of Peru.

IMPORTANCE Our multidisciplinary approach provides new insights into the ecophysiology of a newly isolated environmental Arcobacter species, as well as the physiological flexibility within the Arcobacter genus and sulfide-oxidizing, denitrifying microbial communities within oceanic oxygen minimum zones (OMZs). The chemolithoheterotrophic species Arcobacter peruensis may play a substantial role in the diverse consortium of bacteria that is capable of coupling denitrification and fixed nitrogen loss to sulfide oxidation in eutrophic, sulfidic coastal waters. With increasing anthropogenic pressures on coastal regions, e.g., eutrophication and deoxygenation (D. Breitburg, L. A. Levin, A. Oschlies, M. Grégoire, et al., Science 359:eaam7240, 2018, https://doi.org/10.1126/science.aam7240), niches where sulfide-oxidizing, denitrifying heterotrophs such as A. peruensis thrive are likely to expand.
7 show abstract
Magnetosomes are membrane-enveloped single-domain ferromagnetic nanoparticles enabling the navigation of magnetotactic bacteria along magnetic field lines. Strict control over each step of biomineralization generates particles of high crystallinity, strong magnetization, and remarkable uniformity in size and shape, which is particularly interesting for many biomedical and biotechnological applications. However, to understand the physicochemical processes involved in magnetite biomineralization, close and precise monitoring of particle production is required. Commonly used techniques, such as transmission electron microscopy (TEM) or Fe measurements, allow only for semiquantitative assessment of the magnetosome formation without routinely revealing quantitative structural information. In this study, lab-based small-angle X-ray scattering (SAXS) is explored as a means to monitor the different stages of magnetosome biogenesis in the model organism Magnetospirillum gryphiswaldense. SAXS is evaluated as a quantitative stand-alone technique to analyze the size, shape, and arrangement of magnetosomes in cells cultivated under different growth conditions. By applying a simple and robust fitting procedure based on spheres aligned in linear chains, it is demonstrated that the SAXS data sets contain information on both the diameter of the inorganic crystal and the protein-rich magnetosome membrane. The analyses corroborate a narrow particle size distribution with an overall magnetosome radius of 19 nm in Magnetospirillum gryphiswaldense. Furthermore, the averaged distance between individual magnetosomes is determined, revealing a chain-like particle arrangement with a center-to-center distance of 53 nm. Overall, these data demonstrate that SAXS can be used as a novel stand-alone technique allowing for the at-line monitoring of magnetosome biosynthesis, thereby providing accurate information on the particle nanostructure.

IMPORTANCE This study explores lab-based small-angle X-ray scattering (SAXS) as a novel quantitative stand-alone technique to monitor the size, shape, and arrangement of magnetosomes during different stages of particle biogenesis in the model organism Magnetospirillum gryphiswaldense. The SAXS data sets contain volume-averaged, statistically accurate information on both the diameter of the inorganic nanocrystal and the enveloping protein-rich magnetosome membrane. As a robust and nondestructive in situ technique, SAXS can provide new insights into the physicochemical steps involved in the biosynthesis of magnetosome nanoparticles as well as their assembly into well-ordered chains. The proposed fit model can easily be adapted to account for different particle shapes and arrangements produced by other strains of magnetotactic bacteria, thus rendering SAXS a highly versatile method.
8 show abstract
Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ssuD mutant was defective in root hair infection and that ssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.

IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.
9 show abstract
The geographic mosaic theory of coevolution (GMC) posits that coevolutionary dynamics go beyond local coevolution and are comprised of the following three components: geographic selection mosaics, coevolutionary hot spots, and trait remixing. It is unclear whether the GMC applies to bacteria, as horizontal gene transfer and cosmopolitan dispersal may violate theoretical assumptions. Here, we test key GMC predictions in an antibiotic-producing bacterial symbiont (genus Pseudonocardia) that protects the crops of neotropical fungus-farming ants (Apterostigma dentigerum) from a specialized pathogen (genus Escovopsis). We found that Pseudonocardia antibiotic inhibition of common Escovopsis pathogens was elevated in A. dentigerum colonies from Panama compared to those from Costa Rica. Furthermore, a Panama Canal Zone population of Pseudonocardia on Barro Colorado Island (BCI) was locally adapted, whereas two neighboring populations were not, consistent with a GMC-predicted selection mosaic and a hot spot of adaptation surrounded by areas of maladaptation. Maladaptation was shaped by incongruent Pseudonocardia-Escovopsis population genetic structure, whereas local adaptation was facilitated by geographic isolation on BCI after the flooding of the Panama Canal. Genomic assessments of antibiotic potential of 29 Pseudonocardia strains identified diverse and unique biosynthetic gene clusters in BCI strains despite low genetic diversity in the core genome. The strength of antibiotic inhibition was not correlated with the presence/absence of individual biosynthetic gene clusters or with parasite location. Rather, biosynthetic gene clusters have undergone selective sweeps, suggesting that the trait remixing dynamics conferring the long-term maintenance of antibiotic potency rely on evolutionary genetic changes within already-present biosynthetic gene clusters and not simply on the horizontal acquisition of novel genetic elements or pathways.

IMPORTANCE Recently, coevolutionary theory in macroorganisms has been advanced by the geographic mosaic theory of coevolution (GMC), which considers how geography and local adaptation shape coevolutionary dynamics. Here, we test GMC in an ancient symbiosis in which the ant Apterostigma dentigerum cultivates fungi in an agricultural system analogous to human farming. The cultivars are parasitized by the fungus Escovopsis. The ants maintain symbiotic actinobacteria with antibiotic properties that help combat Escovopsis infection. This antibiotic symbiosis has persisted for tens of millions of years, raising the question of how antibiotic potency is maintained over these time scales. Our study tests the GMC in a bacterial defensive symbiosis and in a multipartite symbiosis framework. Our results show that this multipartite symbiotic system conforms to the GMC and demonstrate that this theory is applicable in both microbes and indirect symbiont-symbiont interactions.
10 show abstract
During phenylalanine catabolism, phenylacetic acid (PAA) is converted to phenylacetyl coenzyme A (PAA-CoA) by a ligase, PaaK, and then PAA-CoA is epoxidized by a multicomponent monooxygenase, PaaABCDE, before further degradation through the tricarboxylic acid (TCA) cycle. In the opportunistic pathogen Burkholderia cenocepacia, loss of paaABCDE attenuates virulence factor expression, which is under the control of the LuxIR-like quorum sensing (QS) system, CepIR. To further investigate the link between CepIR-regulated virulence and PAA catabolism, we created knockout mutants of the first step of the pathway (PAA-CoA synthesis by PaaK) and characterized them in comparison to a paaABCDE mutant using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and virulence assays. We found that while loss of PaaABCDE decreased virulence, deletion of the paaK genes resulted in a more virulent phenotype than that of the wild-type strain. Deletion of either paaK or paaABCDE led to higher levels of released PAA but no differences in levels of internal accumulation compared to the wild-type level. While we found no evidence of direct cepIR downregulation by PAA-CoA or PAA, a low-virulence cepR mutant reverted to a virulent phenotype upon removal of the paaK genes. On the other hand, removal of paaABCDE in the cepR mutant did not impact its attenuated phenotype. Together, our results suggest an indirect role for PAA-CoA in suppressing B. cenocepacia CepIR-activated virulence.

IMPORTANCE The opportunistic pathogen Burkholderia cenocepacia uses a chemical signal process called quorum sensing (QS) to produce virulence factors. In B. cenocepacia, QS relies on the presence of the transcriptional regulator CepR which, upon binding QS signal molecules, activates virulence. In this work, we found that even in the absence of CepR, B. cenocepacia can elicit a pathogenic response if phenylacetyl-CoA, an intermediate of the phenylacetic acid degradation pathway, is not produced. Instead, accumulation of phenylacetyl-CoA appears to attenuate pathogenicity. Therefore, we have discovered that it is possible to trigger virulence in the absence of CepR, challenging the classical view of activation of virulence by this QS mechanism. Our work provides new insight into the relationship between metabolism and virulence in opportunistic bacteria. We propose that in the event that QS signaling molecules cannot accumulate to trigger a pathogenic response, a metabolic signal can still activate virulence in B. cenocepacia.
11 show abstract
Environmental surveillance can be used to trace enteroviruses shed from human stool using a sewer network that is independent of symptomatic or asymptomatic infection. In this study, the local transmission of enteroviruses was analyzed using two wastewater treatment plants, which were relatively close to each other (15 km), designated as sentinels. Influent was collected at both sentinels once a month from 2013 to 2016, and viruses were isolated. Using neutralizing tests with type-specific polyclonal antisera and molecular typing, 933 isolates were identified as enteroviruses. Our results showed that the frequency of virus isolation varied for each serotype at the two sentinels in a time-dependent manner. Because echovirus 11 (Echo11) and coxsackievirus B5 isolates showed a high frequency and were difficult to distinguish, they were further grouped into various lineages based on the VP1 amino acid sequences. The prevalence of each lineage was visualized using multidimensional scaling. The results showed that Echo11 isolates of the same lineage were isolated continuously, similar to coxsackievirus B5 isolates of three lineages. Conversely, Echo1, Echo13, Echo18, Echo19, Echo20, Echo29, and Echo33 were isolated only once each. Our findings suggested that if an enterovirus is imported into the population, it may result in small-scale transmission, whereas if there are initially many infected individuals, it may be possible for the virus to spread to a wide area, beyond the local community, over time. In addition, our findings could provide insights into risk assessment of transmission for importation of poliovirus in polio-free countries and regions.

IMPORTANCE In this study, we showed that environmental enterovirus surveillance can be used to monitor the propagation of nonpolio enteroviruses in addition to poliovirus detection. Since epidemiological studies of virus transmission based on the past were performed using specimens from humans, there were limitations to research design, such as specimen collection for implementation on a large-scale target population. However, environmental monitoring can dynamically track the ecological changes in enteroviruses in the region by monitoring viruses in chronological order and targeting the population within the area by monitoring viruses over time. We observed differences in the transmission of echovirus 11 and coxsackievirus B5 in the region according to lineage in a time-dependent manner and with a multidimensional scaling pattern.
12 show abstract
The methylotrophic yeast Pichia pastoris has been utilized for heterologous protein expression for over 30 years. Because P. pastoris secretes few of its own proteins, the exported recombinant protein is the major polypeptide in the extracellular medium, making purification relatively easy. Unfortunately, some recombinant proteins intended for secretion are retained within the cell. A mutant strain isolated in our laboratory, containing a disruption of the BGS13 gene, displayed elevated levels of secretion for a variety of reporter proteins. The Bgs13 peptide (Bgs13p) is similar to the Saccharomyces cerevisiae protein kinase C 1 protein (Pkc1p), but its specific mode of action is currently unclear. To illuminate differences in the secretion mechanism between the wild-type (wt) strain and the bgs13 strain, we determined that the disrupted bgs13 gene expressed a truncated protein that had reduced protein kinase C activity and a different location in the cell, compared to the wt protein. Because the Pkc1p of baker’s yeast plays a significant role in cell wall integrity, we investigated the sensitivity of the mutant strain’s cell wall to growth antagonists and extraction by dithiothreitol, determining that the bgs13 strain cell wall suffered from inherent structural problems although its porosity was normal. A proteomic investigation of the bgs13 strain secretome and cell wall-extracted peptides demonstrated that, compared to its wt parent, the bgs13 strain also displayed increased release of an array of normally secreted, endogenous proteins, as well as endoplasmic reticulum-resident chaperone proteins, suggesting that Bgs13p helps regulate the unfolded protein response and protein sorting on a global scale.

IMPORTANCE The yeast Pichia pastoris is used as a host system for the expression of recombinant proteins. Many of these products, including antibodies, vaccine antigens, and therapeutic proteins such as insulin, are currently on the market or in late stages of development. However, one major weakness is that sometimes these proteins are not secreted from the yeast cell efficiently, which impedes and raises the cost of purification of these vital proteins. Our laboratory has isolated a mutant strain of Pichia pastoris that shows enhanced secretion of many proteins. The mutant produces a modified version of Bgs13p. Our goal is to understand how the change in the Bgs13p function leads to improved secretion. Once the Bgs13p mechanism is illuminated, we should be able to apply this understanding to engineer new P. pastoris strains that efficiently produce and secrete life-saving recombinant proteins, providing medical and economic benefits.
13 show abstract
Escherichia coli segregates into phylogenetic groups, with group B2 containing both extraintestinal pathogenic E. coli (ExPEC) and enteropathogenic E. coli (EPEC) strains. Ten main B2 subgroups (subgroups I to X)/sequence type complexes (STcs), as well as EPEC lineages, have been identified. In the current study, we characterized ExPEC and EPEC strains of E. coli B2 phylogenetic subgroups/STcs that colonize Swedish and Pakistani infants. Gut commensal E. coli B2 strains, 120 from Swedish infants (n = 87) and 19 from Pakistani infants (n = 12), were assigned to B2 subgroups. Carriage of the bundle-forming pili and intimin adhesin was examined in the EPEC lineages. The ExPEC virulence markers and the time of persistence of the strains in the microbiota were previously determined. In total, 84% of the Swedish strains and 47% of the Pakistani strains belonged to 1 of the 10 main B2 subgroups (P = 0.001). Among the Swedish strains, the most common B2 subgroups were IX/STc95 (19%), II/STc73 (17%), VI/STc12 (13%), and III/STc127 (11%), with each subgroup carrying distinctive sets of ExPEC virulence markers. EPEC lineages with few ExPEC features constituted 47% of the Pakistani B2 strains but only 7% of the Swedish B2 strains (P = 0.0001). The subgroup distribution within phylogenetic group B2 strains colonizing the gut differed between Swedish and Pakistani infants. B2 subgroups with uropathogenic characteristics dominated the gut microbiota of Swedish infants, while EPEC lineage 1 strains frequently colonized the intestines of Pakistani infants. Moreover, within the B2 subgroups, ExPEC virulence genes were more prevalent in Swedish strains than in Pakistani strains. Thus, ExPEC traits exemplify the intestinal B2 strains from Western populations.

IMPORTANCE The intestinal microbiota is an important reservoir for bacteria that cause extraintestinal infections. Escherichia coli is found ubiquitously in the gut microbiota, and it also causes urinary tract infections, infantile septicemia, and meningitis. Urinary tract infections are usually caused by E. coli strains that originate in the intestinal microbiota. E. coli also causes gastrointestinal infections and is a major cause of diarrhea in infants worldwide. The abilities of certain E. coli strains to cause infections are attributed to their virulence factors, i.e., bacterial components that contribute to the development of different diseases. Our study shows that different subtypes of potentially pathogenic E. coli strains dominate in the gut microbiota of infants in different geographical areas and expands our knowledge of the interplay between bacterial commensalism and pathogenicity.
14 show abstract
Pyrroloquinoline quinone (PQQ) was discovered as a redox cofactor of prokaryotic glucose dehydrogenases in the 1960s, and subsequent studies have demonstrated its importance not only in bacterial systems but also in higher organisms. We have previously reported a novel eukaryotic quinohemoprotein that exhibited PQQ-dependent catalytic activity in a eukaryote. The enzyme, pyranose dehydrogenase (PDH), from the filamentous fungus Coprinopsis cinerea (CcPDH) of the Basidiomycete division, is composed of a catalytic PQQ-dependent domain classified as a member of the novel auxiliary activity family 12 (AA12), an AA8 cytochrome b domain, and a family 1 carbohydrate-binding module (CBM1), as defined by the Carbohydrate-Active Enzymes (CAZy) database. Here, we present the crystal structures of the AA12 domain in its apo- and holo-forms and the AA8 domain of this enzyme. The crystal structures of the holo-AA12 domain bound to PQQ provide direct evidence that eukaryotes have PQQ-dependent enzymes. The AA12 domain exhibits a six-blade β-propeller fold that is also present in other known PQQ-dependent glucose dehydrogenases in bacteria. A loop structure around the active site and a calcium ion binding site are unique among the known structures of bacterial quinoproteins. The AA8 cytochrome domain has a positively charged area on its molecular surface, which is partly due to the propionate group of the heme interacting with Arg181; this feature differs from the characteristics of cytochrome b in the AA8 domain of the fungal cellobiose dehydrogenase and suggests that this difference may affect the pH dependence of electron transfer.

IMPORTANCE Pyrroloquinoline quinone (PQQ) is known as the "third coenzyme" following nicotinamide and flavin. PQQ-dependent enzymes have previously been found only in prokaryotes, and the existence of a eukaryotic PQQ-dependent enzyme was in doubt. In 2014, we found an enzyme in mushrooms that catalyzes the oxidation of various sugars in a PQQ-dependent manner and that was a PQQ-dependent enzyme found in eukaryotes. This paper presents the X-ray crystal structures of this eukaryotic PQQ-dependent quinohemoprotein, which show the active site, and identifies the amino acid residues involved in the binding of the cofactor PQQ. The presented X-ray structures reveal that the AA12 domain is in a binary complex with the coenzyme, clearly proving that PQQ-dependent enzymes exist in eukaryotes as well as prokaryotes. Because no biosynthetic system for PQQ has been reported in eukaryotes, future research on the symbiotic systems is expected.
15 show abstract
Most of the edible mushrooms cannot be cultivated or have low yield under industrial conditions, partially due to the lack of knowledge on how basidioma (fruiting body) development is regulated. From winter mushroom (Flammulina velutipes), one of the most popular industrially cultivated mushrooms, a transcription factor, PDD1, with a high-mobility group (HMG)-box domain was identified based on its increased transcription during basidioma development. pdd1 knockdown by RNA interference affected vegetative growth and dramatically impaired basidioma development. A strain with an 89.9% reduction in the level of pdd1 transcription failed to produce primordia, while overexpression of pdd1 promoted basidioma development. When the transcriptional level of pdd1 was increased to 5 times the base level, the mushroom cultivation time was shortened by 9.8% and the yield was increased by at least 33%. RNA sequencing (RNA-seq) analysis revealed that pdd1 knockdown downregulated 331 genes and upregulated 463 genes. PDD1 positively regulated several genes related to fruiting, including 6 pheromone receptor-encoding genes, 3 jacalin-related lectin-encoding genes, FVFD16, and 2 FVFD16 homolog-encoding genes. PDD1 is a novel transcription factor with regulatory function in basidioma development found in industrially cultivated mushrooms. Since its orthologs are widely present in fungal species of the Basidiomycota phylum, PDD1 might have important application prospects in mushroom breeding.

IMPORTANCE Mushrooms are sources of food and medicine and provide abundant nutrients and bioactive compounds. However, most of the edible mushrooms cannot be cultivated commercially due to the limited understanding of basidioma development. From winter mushroom (Flammulina velutipes; also known as Enokitake), one of the most commonly cultivated mushrooms, we identified a novel transcription factor, PDD1, positively regulating basidioma development. PDD1 increases expression during basidioma development. Artificially increasing its expression promoted basidioma formation and dramatically increased mushroom yield, while reducing its expression dramatically impaired its development. In its PDD1 overexpression mutants, mushroom number, height, yield, and biological efficiency were significantly increased. PDD1 regulates the expression of some genes that are important in or related to basidioma development. PDD1 is the first identified transcription factor with defined functions in mushroom development among commercially cultivated mushroom species, and it might be useful in mushroom breeding.
16 show abstract
Soil microorganisms are diverse, although they share functions during the decomposition of organic matter. Thus, preferences for soil conditions and litter quality were explored to understand their niche partitioning. A 1-year-long litterbag transplant experiment evaluated how soil physicochemical traits of contrasting sites combined with chemically distinct litters of sedge (S), milkvetch (M) from a grassland, and beech (B) from forest site decomposition. Litter was assessed by mass loss; C, N, and P contents; and low-molecular-weight compounds. Decomposition was described by the succession of fungi, Actinobacteria, Alphaproteobacteria, and Firmicutes; bacterial diversity; and extracellular enzyme activities. The M litter decomposed faster at the nutrient-poor forest site, where the extracellular enzymes were more active, but microbial decomposers were not more abundant. Actinobacteria abundance was affected by site, while Firmicutes and fungi by litter type and Alphaproteobacteria by both factors. Actinobacteria were characterized as late-stage substrate generalists, while fungi were recognized as substrate specialists and site generalists, particularly in the grassland. Overall, soil conditions determined the decomposition rates in the grassland and forest, but successional patterns of the main decomposers (fungi and Actinobacteria) were determined by litter type. These results suggest that shifts in vegetation mostly affect microbial decomposer community composition.

IMPORTANCE Anthropogenic disturbance may cause shifts in vegetation and alter the litter input. We studied the decomposition of different litter types under soil conditions of a nutrient-rich grassland and nutrient-poor forest to identify factors responsible for changes in the community structure and succession of microbial decomposers. This will help to predict the consequences of induced changes on the abundance and activity of microbial decomposers and recognize if the decomposition process and resulting quality and quantity of soil organic matter will be affected at various sites.
17 show abstract
We studied symbiotic performance of factorial combinations of diverse rhizobial genotypes (GR) and East African common bean varieties (GL) that comprise Andean and Mesoamerican genetic groups. An initial wide screening in modified Leonard jars (LJ) was followed by evaluation of a subset of strains and genotypes in pots (contained the same, sterile medium) in which fixed nitrogen was also quantified. An additive main effect and multiplicative interaction (AMMI) model was used to identify the contribution of individual strains and plant genotypes to the GL x GR interaction. Strong and highly significant GL x GR interaction was found in the LJ experiment but with little evidence of a relation to genetic background or growth habits. The interaction was much weaker in the pot experiment, with all bean genotypes and Rhizobium strains having relatively stable performance. We found that R. etli strain CFN42 and R. tropici strains CIAT899 and NAK91 were effective across bean genotypes but with the latter showing evidence of positive interaction with two specific bean genotypes. This suggests that selection of bean varieties based on their response to inoculation is possible. On the other hand, we show that symbiotic performance is not predicted by any a priori grouping, limiting the scope for more general recommendations. The fact that the strength and pattern of GL x GR depended on growing conditions provides an important cautionary message for future studies.

IMPORTANCE The existence of genotype-by-strain (GL x GR) interaction has implications for the expected stability of performance of legume inoculants and could represent both challenges and opportunities for improvement of nitrogen fixation. We find that significant genotype-by-strain interaction exists in common bean (Phaseolus vulgaris L.) but that the strength and direction of this interaction depends on the growing environment used to evaluate biomass. Strong genotype and strain main effects, combined with a lack of predictable patterns in GL x GR, suggests that at best individual bean genotypes and strains can be selected for superior additive performance. The observation that the screening environment may affect experimental outcome of GL x GR means that identified patterns should be corroborated under more realistic conditions.
18 show abstract
In the past, ballast water has been a key vector in the ship-mediated dispersal of invasive species. Here, we evaluate the potential for port microorganisms to enter and colonize the hull and bilge water of ships. Due to the small size and ubiquitous nature of bacteria, they also have the potential to be spread through hull fouling and bilge water discharge. The goal of this study was to identify the extent to which the boat microbial community is shaped by the microbial community in the port water where the boat spends most of its time. Here, we compared the microbial communities of the hull and bilge compartments of 20 boats to those of the port water in 20 different ports in five regions around the world. We found that there was a significant difference in microbial diversity between boat and port microbial communities. Despite these differences, we found that Cyanobacteria were present at high abundances in the bilge water of most vessels. Due to the limited light in the bilge, the presence of Cyanobacteria suggests that port microorganisms can enter the bilge. Using source-tracking software, we found that, on average, 40% of the bilge and 52% of the hull microbial communities were derived from water. These findings suggest that the bilge of a vessel contains a diverse microbial community that is influenced by the port microbial community and has the potential to serve as an underappreciated vector for dispersal of life.

IMPORTANCE Invasive species have been a worldwide problem for many years. However, the potential for microorganisms to become invasive is relatively underexplored. As the tools to study bacterial communities become more affordable, we are able to perform large-scale studies and examine bacterial communities in higher resolution than was previously practical. This study looked at the potential for bacteria to colonize both boat surfaces and bilge water. We describe the bacterial communities on boats in 20 shipping ports in five regions around the world, describing how these microorganisms were similar to microorganisms found in port water. This suggests that the water influences the bacterial community of a boat and that microorganisms living on a boat could be moved from place to place when the boat travels.
19 show abstract
Alkylpyrazines are important contributors to the flavor of traditional fermented foods. Here, we studied the synthesis mechanisms of 2,5-dimethylpyrazine (2,5-DMP) and 2,3,5-trimethylpyrazine (TMP). Substrate addition, whole-cell catalysis, stable isotope tracing experiments, and gene manipulation revealed that l-threonine is the starting point involving l-threonine-3-dehydrogenase (TDH) and three uncatalyzed reactions to form 2,5-DMP. TDH catalyzes the oxidation of l-threonine. The product of this reaction is l-2-amino-acetoacetate, which is known to be unstable and can decarboxylate to form aminoacetone. It is proposed that aminoacetone spontaneously converts to 2,5-DMP in a pH-dependent reaction, via 3,6-dihydro-2,5-DMP. 2-Amino-3-ketobutyrate coenzyme A (CoA) ligase (KBL) catalyzes the cleavage of l-2-amino-acetoacetate, the product of TDH, into glycine and acetyl-CoA in the presence of CoA. Inactivation of KBL could improve the production of 2,5-DMP. Besides 2,5-DMP, TMP can also be generated by Bacillus subtilis 168 by using l-threonine and d-glucose as the substrates and TDH as the catalytic enzyme.

IMPORTANCE Despite alkylpyrazines' contribution to flavor and their commercial value, the synthesis mechanisms of alkylpyrazines by microorganisms remain poorly understood. This study revealed the substrate, intermediates, and related enzymes for the synthesis of 2,5-dimethylpyrazine (2,5-DMP), which differ from the previous reports about the synthesis of 2,3,5,6-tetramethylpyrazine (TTMP). The synthesis mechanism described here can also explain the production of 2,3,5-trimethylpyrazine (TMP). The results provide insights into an alkylpyrazine’s synthesis pathway involving l-threonine-3-dehydrogenase as the catalytic enzyme and l-threonine as the substrate.
20 show abstract
Escherichia coli is a leading contributor to infectious diarrhea and child mortality worldwide, but it remains unknown how alterations in the gut microbiome vary for distinct E. coli pathotype infections and whether these signatures can be used for diagnostic purposes. Further, the majority of enteric diarrheal infections are not diagnosed with respect to their etiological agent(s) due to technical challenges. To address these issues, we devised a novel approach that combined traditional, isolate-based and molecular-biology techniques with metagenomics analysis of stool samples and epidemiological data. Application of this pipeline to children enrolled in a case-control study of diarrhea in Ecuador showed that, in about half of the cases where an E. coli pathotype was detected by culture and PCR, E. coli was likely not the causative agent based on the metagenome-derived low relative abundance, the level of clonality, and/or the virulence gene content. Our results also showed that diffuse adherent E. coli (DAEC), a pathotype that is generally underrepresented in previous studies of diarrhea and thus, thought not to be highly virulent, caused several small-scale diarrheal outbreaks across a rural to urban gradient in Ecuador. DAEC infections were uniquely accompanied by coelution of large amounts of human DNA and conferred significant shifts in the gut microbiome composition relative to controls or infections caused by other E. coli pathotypes. Our study shows that diarrheal infections can be efficiently diagnosed for their etiological agent and categorized based on their effects on the gut microbiome using metagenomic tools, which opens new possibilities for diagnostics and treatment.

IMPORTANCE E. coli infectious diarrhea is an important contributor to child mortality worldwide. However, diagnosing and thus treating E. coli infections remain challenging due to technical and other reasons associated with the limitations of the traditional culture-based techniques and the requirement to apply Koch’s postulates. In this study, we integrated traditional microbiology techniques with metagenomics and epidemiological data in order to identify cases of diarrhea where E. coli was most likely the causative disease agent and evaluate specific signatures in the disease-state gut microbiome that distinguish between diffuse adherent, enterotoxigenic, and enteropathogenic E. coli pathotypes. Therefore, our methodology and results should be highly relevant for diagnosing and treating diarrheal infections and have important applications in public health.
21 show abstract
Conjugative transfer of bacterial plasmids to recipient cells is often mediated by type IV secretion machinery. Experimental investigations into the minimal gene sets required for efficient conjugative transfer suggest that such gene sets are variable, depending on plasmids. We have been analyzing the conjugative transfer of Pseudomonas-derived and IncP-9 plasmids, NAH7 and pWW0, whose conjugation systems belong to the MPFT type. Our deletion analysis and synthetic biology analysis in this study showed that these plasmids require previously uncharacterized genes, mpfK (formerly orf34) and its functional homolog, kikA, respectively, for their efficient conjugative transfer. MpfK was localized in periplasm and had four cysteine residues whose intramolecular or intermolecular disulfide bond formation was suggested to be important for efficient conjugative transfer. The mpfK homologs were specifically carried by many MPFT-type plasmids, including non-IncP-9 plasmids, such as R388 and R751. Intriguingly, the mpfK homologs from the two non-IncP-9 plasmids were not required for conjugation of their plasmids, but were able to complement efficiently the transfer defect of the NAH7 mpfK mutant. Our results suggested the importance of the mpfK homologs for conjugative transfer of MPFT-type plasmids.

IMPORTANCE IncP-9 plasmids are important mobile genetic elements for the degradation of various aromatic hydrocarbons. Elucidation of conjugative transfer of such plasmids is expected to greatly contribute to our understanding of its role in the bioremediation of polluted environments. The present study mainly focused on the conjugation system of NAH7, a well-studied and naphthalene-catabolic IncP-9 plasmid. Our analysis showed that the NAH7 conjugation system uniquely requires, in addition to the conserved components of the type IV secretion system (T4SS), a previously uncharacterized periplasmic protein, MpfK, for successful conjugation. Our findings collectively revealed a unique type of T4SS-associated conjugation system in the IncP-9 plasmids.
22 show abstract
Potable water can be a source of transmission for legionellosis and nontuberculous mycobacterium (NTM) infections and diseases. Legionellosis is caused largely by Legionella pneumophila, specifically serogroup 1 (Sg1). Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium abscessus are three leading species associated with pulmonary NTM disease. The estimated rates of these diseases are increasing in the United States, and the cost of treatment is high. Therefore, a national assessment of water disinfection efficacy for these pathogens was needed. The disinfectant type and total chlorine residual (TClR) were investigated to understand their influence on the detection and concentrations of the five pathogens in potable water. Samples (n = 358) were collected from point-of-use taps (cold or hot) from locations across the United States served by public water utilities that disinfected with chlorine or chloramine. The bacteria were detected and quantified using specific primer and probe quantitative-PCR (qPCR) methods. The total chlorine residual was measured spectrophotometrically. Chlorine was the more potent disinfectant for controlling the three mycobacterial species. Chloramine was effective at controlling L. pneumophila and Sg1. Plotting the TClR associated with positive microbial detection showed that an upward TClR adjustment could reduce the bacterial count in chlorinated water but was not as effective for chloramine. Each species of bacteria responded differently to the disinfection type, concentration, and temperature. There was no unifying condition among the water characteristics studied that achieved microbial control for all. This information will help guide disinfectant decisions aimed at reducing occurrences of these pathogens at consumer taps and as related to the disinfectant type and TClR.

IMPORTANCE The primary purpose of tap water disinfection is to control the presence of microbes. This study evaluated the role of disinfectant choice on the presence at the tap of L. pneumophila, its Sg1 serogroup, and three species of mycobacteria in tap water samples collected at points of human exposure at locations across the United States. The study demonstrates that microbial survival varies based on the microbial species, disinfectant, and TClR.
23 show abstract
Single-nucleotide polymorphisms (SNPs) are widely used for whole-genome sequencing (WGS)-based subtyping of foodborne pathogens in outbreak and source tracking investigations. Mobile genetic elements (MGEs) are commonly present in bacterial genomes and may affect SNP subtyping results if their evolutionary history and dynamics differ from that of the bacterial chromosomes. Using Salmonella enterica as a model organism, we surveyed major categories of MGEs, including plasmids, phages, insertion sequences, integrons, and integrative and conjugative elements (ICEs), in 990 genomes representing 21 major serotypes of S. enterica. We evaluated whether plasmids and chromosomal MGEs affect SNP subtyping with 9 outbreak clusters of different serotypes found in the United States in 2018. The median total length of chromosomal MGEs accounted for 2.5% of a typical S. enterica chromosome. Of the 990 analyzed S. enterica isolates, 68.9% contained at least one assembled plasmid sequence. The median total length of assembled plasmids in these isolates was 93,671 bp. Plasmids that carry high densities of SNPs were found to substantially affect both SNP phylogenies and SNP distances among closely related isolates if they were present in the reference genome for SNP subtyping. In comparison, chromosomal MGEs were found to have limited impact on SNP subtyping. We recommend the identification of plasmid sequences in the reference genome and the exclusion of plasmid-borne SNPs from SNP subtyping analysis.

IMPORTANCE Despite increasingly routine use of WGS and SNP subtyping in outbreak and source tracking investigations, whether and how MGEs affect SNP subtyping has not been thoroughly investigated. Besides chromosomal MGEs, plasmids are frequently entangled in draft genome assemblies and yet to be assessed for their impact on SNP subtyping. This study provides evidence-based guidance on the treatment of MGEs in SNP analysis for Salmonella to infer phylogenetic relationship and SNP distance between isolates.
24 show abstract
c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts c.

IMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c. It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c. Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.
25 show abstract
Many Gram-negative bacteria employ N-acylhomoserine lactones (AHLs) as quorum-sensing (QS) signal molecules to regulate virulence expression in a density-dependent manner. Quorum quenching (QQ) via enzymatic inactivation of AHLs is a promising strategy to reduce bacterial infections and drug resistance. Herein, a thermostable AHL lactonase (AidB), which could degrade different AHLs, with or without a substitution of carbonyl or hydroxyl at the C-3 position, was identified from the soil bacterium Bosea sp. strain F3-2. Ultrahigh-performance liquid chromatography analysis demonstrated that AidB is an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone (HSL) ring. AidB was thermostable in the range 30 to 80°C and showed maximum activity after preincubation at 60°C for 30 min. The optimum temperature of AidB was 60°C, and the enzyme could be stably stored in double-distilled water (ddH2O) at 4°C or room temperature. AidB homologs were found only in Rhizobiales and Rhodospirillales of the Alphaproteobacteria. AidB from Agrobacterium tumefaciens and AidB from Rhizobium multihospitium (with amino acid identities of 50.6% and 52.8% to AidB, respectively) also showed thermostable AHL degradation activity. When introduced into bacteria, plasmid-expressed AidB attenuated pyocyanin production by Pseudomonas aeruginosa PAO1 and the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Z3-3, suggesting that AidB is a potential therapeutic agent by degrading AHLs.

IMPORTANCE A quorum-sensing system using AHLs as the signal in many bacterial pathogens is a critical virulence regulator and an attractive target for anti-infective drugs. In this work, we identified a novel AHL lactonase, AidB, from a soil bacterial strain, Bosea sp. F3-2. The expression of aidB reduced the production of AHL signals and QS-dependent virulence factors in Pseudomonas aeruginosa and Pectobacterium carotovorum. The homologs of AidB with AHL-degrading activities were found only in several genera belonging to the Alphaproteobacteria. Remarkably, AidB is a thermostable enzyme that retained its catalytic activity after treatment at 80°C for 30 min and exhibits reliable storage stability at both 4°C and room temperature. These properties might make it more suitable for practical application.
26 show abstract
Growth energetics and metabolic efficiency contribute to the lifestyle and habitat imprint of microorganisms. Roseobacters constitute one of the most abundant and successful marine bacterioplankton groups. Here, we reflect on the energetics and metabolic efficiency of Phaeobacter inhibens DSM 17395, a versatile heterotrophic roseobacter. Fourteen different substrates (five sugars and nine amino acids) and their degradation pathways were assessed for energetic efficiencies based on catabolic ATP yields, calculated from net formed ATP and reducing equivalents. The latter were converted into ATP by employing the most divergent coupling ratios (i.e., ions per ATP) currently known for F1Fo ATP synthases in heterotrophic bacteria. The catabolic ATP yields of the pathways studied in P. inhibens differed ~3-fold. The actual free energy costs for ATP synthesis were estimated at 81.6 kJ per mol ATP (3.3 ions per ATP) or 104.2 kJ per mol ATP (4.3 ions per ATP), yielding an average thermodynamic efficiency of ~37.7% or ~29.5%, respectively. Growth performance (rates, yields) and carbon assimilation efficiency were determined for P. inhibens growing in process-controlled bioreactors with 10 different single substrates (Glc, Man, N-acetylglucosamine [Nag], Phe, Trp, His, Lys, Thr, Val, or Leu) and with 2 defined substrate mixtures. The efficiencies of carbon assimilation into biomass ranged from ~28% to 61%, with His/Trp and Thr/Leu yielding the lowest and highest levels. These efficiencies correlated with catabolic and ATP yields only to some extent. Substrate-specific metabolic demands and/or functions, as well as the compositions of the substrate mixtures, apparently affected the energetic costs of growth. These include energetic burdens associated with, e.g., slow growth, stress, and/or the production of tropodithietic acid.

IMPORTANCE Heterotrophic members of the bacterioplankton serve the marine ecosystem by transforming organic matter, an activity that is governed by the bacterial growth efficiencies (BGEs) obtained under given environmental conditions. In marine ecology, the concept of BGE refers to the carbon assimilation efficiency within natural communities. The marine bacterium studied here, Phaeobacter inhibens DSM 17395, is a copiotrophic representative of the globally abundant Roseobacter group, and the 15 catabolic pathways investigated are widespread among these marine heterotrophs. Combining pathway-specific catabolic ATP yields with in-depth quantitative physiological data could (i) provide a new baseline for the study of growth energetics and efficiency in further Roseobacter group members and other copiotrophic marine bacteria in productive coastal ecosystems and (ii) contribute to a better understanding of the factors controlling BGE (including the additional energetic burden arising from widespread secondary-metabolite formation) based on laboratory studies with pure cultures.
27 show abstract
Tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis is one of the most important seed-borne tomato diseases around the globe. The disease was initially reported in 1993 in Iran, and it became a rising threat for the multibillion dollar tomato industry of the country during the last decade. In this study, using phylogeographic analyses, we determined genetic diversity and geographic distribution of C. michiganensis subsp. michiganensis in Iran. Our field surveys showed that the pathogen is expanding into the southern and eastern areas of the country. Furthermore, multilocus sequence analysis and typing (MLSA/MLST) using the sequences of five housekeeping genes (atpD, gyrB, ppk, recA, and rpoB) revealed that 37 C. michiganensis subsp. michiganensis strains isolated in Iran had high genetic diversity and placed in 15 sequence types (STs), while all the available 184 worldwide C. michiganensis subsp. michiganensis sequences were placed in 43 STs. MLSA divided the worldwide C. michiganensis subsp. michiganensis strains into two phylogroups (I and II). Among the 37 strains isolated in Iran, 30 strains clustered in phylogroup I, while 7 strains clustered in phylogroup II. Phylogeographic data inferred from the allelic profile of the five housekeeping genes suggested multiple introductions of C. michiganensis subsp. michiganensis inoculum into Iran, while the geographic origin of the Iranian C. michiganensis subsp. michiganensis strains remains undetermined. Further analyses using higher numbers of strains are warranted to decipher the evolutionary history of C. michiganensis subsp. michiganensis in Iran. Additionally, stricter seed/transplant inspections are recommended to reduce the risk of pathogen expansion to areas with no history of the disease.

IMPORTANCE Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker disease, is one of the economically important pathogens of solanaceous crops (e.g., eggplant, pepper, and tomato) around the world. The disease occurs in many countries, with a particular importance in regions characterized by high precipitation and humid environmental conditions. As a seed-borne pathogen, C. michiganensis subsp. michiganensis is included in the A2 (high risk) list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Bacterial canker disease was reported for the first time in 1993 in Iran, while the geographic distribution, genetic diversity, and phylogenetic position of the causal agent remain undetermined. In this study, using the multilocus sequence analysis and typing (MLSA/MLST) approach, we provided a phylogeographic scheme for the C. michiganensis subsp. michiganensis strains isolated in Iran. Furthermore, global-scale phylogenetic analyses led to determination of phylogenetic position of Iranian C. michiganensis subsp. michiganensis strains among worldwide population of the pathogen. Based on diversity parameters and population structure, we suggest relatively higher genetic diversity of the bacterial canker pathogen in Iran than has so far been observed in the other areas of the world. Results obtained in this study provide a novel insight into the genetic diversity and population structure of the bacterial canker pathogen on a global scale.
28 show abstract
Authors: MacPherson, C ; Audy ; J ; Mathieu ; O ; Tompkins ; T. A.
Article URL: http://aem.asm.org/cgi/content/short/85/24/e02294-19?rss=1
Citation: Vol 85 No. 24 (2019) pp e02294-19 e02294-19
Publication Date: 2019-11-27T08:00:49-08:00
Journal: Applied and Environmental Microbiology
29 show abstract
Authors: Drake H. L.
Article URL: http://aem.asm.org/cgi/content/short/85/24/e02333-19?rss=1
Citation: Vol 85 No. 24 (2019) pp e02333-19 e02333-19
Publication Date: 2019-11-27T08:00:49-08:00
Journal: Applied and Environmental Microbiology
30 show abstract

Article URL: http://aem.asm.org/cgi/content/short/85/24/e02363-19?rss=1
Citation: Vol 85 No. 24 (2019) pp e02363-19 e02363-19
Publication Date: 2019-11-27T08:00:49-08:00
Journal: Applied and Environmental Microbiology

Green Open Access

Sherpa/Romeo info

Author can archive pre-print (ie pre-refereeing)
Author can (with restrictions) archive post-print (ie final draft post-refereeing) (6 months embargo)
Author cannot archive publisher's version/PDF
  • Author's pre-print on recognised non profit pre-print archives
  • Author's post-print on funder's repositories, institutional repository or subject-based repositories, PubMed Central
  • Non-commercial
  • Publisher's version/PDF cannot be used
  • Publisher last contacted on 21/05/2015
  • Publisher last reviewed on 13/02/2019

More Sherpa/Romeo information

APC Discount

For this journal no deals have been made concerning APC discount

More information on Open Access publishing


Journal Citation Reports

This information is only available when you log on as a WUR user !

Scopus Journal Metrics (2017)

SJR: 1.684
SNIP: 1.224
Impact (Scopus CiteScore): 0.399
Quartile: Q1
CiteScore percentile: 94%
CiteScore rank: 14 out of 255
Cited by WUR staff: 2916 times. (2016-2018)

Similar journals  

  • Journal of bacteriology
  • Proceedings of the national academy of sciences o...
  • Plos one
  • Environmental microbiology
  • Nature

  • More...
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.