WUR Journal browser

WUR Journal browser

  • external user (warningwarning)
  • Log in as
  • The Journal Browser provides a list of more than 30,000 journals. It can be consulted by authors who wish to select a journal for publishing their manuscript Open Access. The information in this list is aggregated from several sources on a regular basis:

    • A list of journals for which the Association of Universities in the Netherlands (VSNU) has made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of Dutch universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs).
    • A list of journals covered by the Journal Citation Reports.
    • A list of journals covered by Scopus.
    • Journals indexed in the Directory of Open Access Journals (DOAJ).
    • Lists of journals for which specific Dutch universities have made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of these universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs). Depending on the university from which the Journal Browser is consulted, this information is shown.
    • Additional data on citations made to journals, in articles published by staff from a specific Dutch university, that are made available by that university. Depending on the university from which the Journal Browser is consulted, this information is shown.

    In the Journal Browser, a search box can be used to look up journals on certain subjects. The terms entered in this box are used to search the journal titles and other metadata (e.g. keywords).

    After having selected journals by subject, it is possible to apply additional filters. These concern no/full costs and discounts for Open Access publishing, support on Open Access publishing in journals, and the quartile to which the journal’s impact factor belongs.

    When one selects a journal in the Journal Browser, the following information may be presented:

    • General information about the selected journal such as title and ISSNs, together with a link to the journal’s website.
    • APC discount that holds for the selected journal if it is part of an Open Access deal.
    • Impact measures for the selected journal from Journal Citation Reports or Scopus. The impact measures that are shown may vary, depending on the university from which the Journal Browser is consulted. For some universities, the number of citations made to the selected journal (in articles published by staff from that university) is also shown.
    • Information from Sherpa/Romeo on the conditions under which articles from the selected journal may be made available via Green Open Access.
    • A listing of articles recently published in the selected journal.
    • For some universities, information is available on what journals have been co-cited most frequently together with the selected journal (in articles published by staff from these universities). When available, this information is presented under ‘similar journals’.

Plant Physiology

American Society of Plant Biologists


ISSN: 0032-0889 (1532-2548)
Plant Sciences - Plant Science - Physiology - Genetics
APC costs unknown

Recent articles

1 show abstract
Authors: Minorsky P. V.
Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/1?rss=1
Citation: Vol 177 No. 1 (2018) pp 1 2
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology
2 show abstract
Authors: Annunziata M. G.
Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/3?rss=1
Citation: Vol 177 No. 1 (2018) pp 3 4
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology
3 show abstract
Authors: Hayes S.
Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/5?rss=1
Citation: Vol 177 No. 1 (2018) pp 5 6
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology
4 show abstract
Authors: Holloway-Phillips M.
Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/7?rss=1
Citation: Vol 177 No. 1 (2018) pp 7 9
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology
5 show abstract
Authors: Ivanov, R ; Robinson ; D. G.
Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/10?rss=1
Citation: Vol 177 No. 1 (2018) pp 10 11
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology
6 show abstract
Authors: Paul, M. J ; Gonzalez-Uriarte ; A ; Griffiths ; C. A ; Hassani-Pak ; K.
Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/12?rss=1
Citation: Vol 177 No. 1 (2018) pp 12 23
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology
7 show abstract
With nearly 140 α-glycosidases in 14 different families, plants are well equipped with enzymes that can break the α-glucosidic bonds in a large diversity of molecules. Here, we introduce activity-based protein profiling (ABPP) of α-glycosidases in plants using α-configured cyclophellitol aziridine probes carrying various fluorophores or biotin. In Arabidopsis (Arabidopsis thaliana), these probes label members of the GH31 family of glycosyl hydrolases, including endoplasmic reticulum-resident α-glucosidase-II Radial Swelling3/Priority for Sweet Life5 (RSW3/PSL5) and Golgi-resident α-mannosidase-II Hybrid Glycosylation1 (HGL1), both of which trim N-glycans on glycoproteins. We detected the active state of extracellular α-glycosidases such as α-xylosidase XYL1, which acts on xyloglucans in the cell wall to promote cell expansion, and α-glucosidase AGLU1, which acts in starch hydrolysis and can suppress fungal invasion. Labeling of α-glycosidases generates pH-dependent signals that can be suppressed by α-glycosidase inhibitors in a broad range of plant species. To demonstrate its use on a nonmodel plant species, we applied ABPP on saffron crocus (Crocus sativus), a cash crop for the production of saffron spice. Using a combination of biotinylated glycosidase probes, we identified and quantified 67 active glycosidases in saffron crocus stigma, of which 10 are differentially active. We also uncovered massive changes in hydrolase activities in the corms upon infection with Fusarium oxysporum using multiplex fluorescence labeling in combination with probes for serine hydrolases and cysteine proteases. These experiments demonstrate the ease with which active α-glycosidases and other hydrolases can be analyzed through ABPP in model and nonmodel plants.
8 show abstract
Chloroplasts require a fine-tuned control of their internal Ca2+ concentration, which is crucial for many aspects of photosynthesis and for other chloroplast-localized processes. Increasing evidence suggests that calcium regulation within chloroplasts also may influence Ca2+ signaling pathways in the cytosol. To investigate the involvement of thylakoids in Ca2+ homeostasis and in the modulation of chloroplast Ca2+ signals in vivo, we targeted the bioluminescent Ca2+ reporter aequorin as a YFP fusion to the lumen and the stromal surface of thylakoids in Arabidopsis (Arabidopsis thaliana). Thylakoid localization of aequorin-based probes in stably transformed lines was confirmed by confocal microscopy, immunogold labeling, and biochemical analyses. In resting conditions in the dark, free Ca2+ levels in the thylakoid lumen were maintained at about 0.5 μm, which was a 3- to 5-fold higher concentration than in the stroma. Monitoring of chloroplast Ca2+ dynamics in different intrachloroplast subcompartments (stroma, thylakoid membrane, and thylakoid lumen) revealed the occurrence of stimulus-specific Ca2+ signals, characterized by unique kinetic parameters. Oxidative and salt stresses initiated pronounced free Ca2+ changes in the thylakoid lumen. Localized Ca2+ increases also were observed on the thylakoid membrane surface, mirroring transient Ca2+ changes observed for the bulk stroma, but with specific Ca2+ dynamics. Moreover, evidence was obtained for dark-stimulated intrathylakoid Ca2+ changes, suggesting a new scenario for light-to-dark-induced Ca2+ fluxes inside chloroplasts. Hence, thylakoid-targeted aequorin reporters can provide new insights into chloroplast Ca2+ storage and signal transduction. These probes represent novel tools with which to investigate the role of thylakoids in Ca2+ signaling networks within chloroplasts and plant cells.
9 show abstract
Soft x-ray microscopy (SXM) is a minimally invasive technique for single-cell high-resolution imaging as well as the visualization of intracellular distributions of light elements such as carbon, nitrogen, and oxygen. We used SXM to observe photosynthesis and nitrogen fixation in the filamentous cyanobacterium Anabaena sp. PCC 7120, which can form heterocysts during nitrogen starvation. Statistical and spectroscopic analyses from SXM images around the K-absorption edge of nitrogen revealed a significant difference in the carbon-to-nitrogen (C/N) ratio between vegetative cells and heterocysts. Application of this analysis to soft x-ray images of Anabaena sp. PCC 7120 revealed inhomogenous C/N ratios in the cells. Furthermore, soft x-ray tomography of Anabaena sp. PCC 7120 revealed differing cellular C/N ratios, indicating different carbon and nitrogen distributions between vegetative cells and heterocysts in three dimensions.
10 show abstract
A fundamental challenge in plant physiology is independently determining the rates of gross O2 production by photosynthesis and O2 consumption by respiration, photorespiration, and other processes. Previous studies on isolated chloroplasts or leaves have separately constrained net and gross O2 production (NOP and GOP, respectively) by labeling ambient O2 with 18O while leaf water was unlabeled. Here, we describe a method to accurately measure GOP and NOP of whole detached leaves in a cuvette as a routine gas-exchange measurement. The petiole is immersed in water enriched to a 18O of ~9,000, and leaf water is labeled through the transpiration stream. Photosynthesis transfers 18O from H2O to O2. GOP is calculated from the increase in 18O of O2 as air passes through the cuvette. NOP is determined from the increase in O2/N2. Both terms are measured by isotope ratio mass spectrometry. CO2 assimilation and other standard gas-exchange parameters also were measured. Reproducible measurements are made on a single leaf for more than 15 h. We used this method to measure the light response curve of NOP and GOP in French bean (Phaseolus vulgaris) at 21% and 2% O2. We then used these data to examine the O2/CO2 ratio of net photosynthesis, the light response curve of mesophyll conductance, and the apparent inhibition of respiration in the light (Kok effect) at both oxygen levels. The results are discussed in the context of evaluating the technique as a tool to study and understand leaf physiological traits.
11 show abstract
Sunflecks, transient patches of light that penetrate through gaps in the canopy and transiently interrupt shade, are eco-physiologically and agriculturally important sources of energy for carbon gain, but our molecular understanding of how plant organs perceive and respond to sunflecks through photoreceptors remains limited. The UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) is a recent addition to the list of plant photosensory receptors, and we have made considerable advances in our understanding of the physiology and molecular mechanisms of action of UVR8 and its signaling pathway. However, the function of UVR8 in the natural environment is poorly understood. Here, we show that the UVR8 dimer/monomer ratio responds quantitatively and reversibly to the intensity of sunflecks that interrupt shade in the field. Sunflecks reduced hypocotyl growth and increased CHALCONE SYNTHASE (CHS) and ELONGATED HYPOCOTYL5 gene expression and CHS protein abundance in wild-type Arabidopsis (Arabidopsis thaliana) seedlings, but the uvr8 mutant was impaired in these responses. UVR8 was also required for normal nuclear dynamics of CONSTITUTIVELY PHOTOMORPHOGENIC1. We propose that UVR8 plays an important role in the plant perception of and response to sunflecks.
12 show abstract
During plant-pathogen interactions, plants use intracellular proteins with nucleotide-binding site and Leu-rich repeat (NBS-LRR) domains to detect pathogens. NBS-LRR proteins represent a major class of plant disease resistance genes (R-genes). Whereas R-genes have been well characterized in angiosperms, little is known about their origin and early diversification. Here, we perform comprehensive evolutionary analyses of R-genes in plants and report the identification of R-genes in basal-branching streptophytes, including charophytes, liverworts, and mosses. Phylogenetic analyses suggest that plant R-genes originated in charophytes and R-proteins diversified into TIR-NBS-LRR proteins and non-TIR-NBS-LRR proteins in charophytes. Moreover, we show that plant R-proteins evolved in a modular fashion through frequent gain or loss of protein domains. Most of the R-genes in basal-branching streptophytes underwent adaptive evolution, indicating an ancient involvement of R-genes in plant-pathogen interactions. Our findings provide novel insights into the origin and evolution of R-genes and the mechanisms underlying colonization of terrestrial environments by plants.
13 show abstract
Suboptimal phosphorus (P) availability is a primary constraint to plant growth on Earth. We tested the hypothesis that maize (Zea mays) genotypes with large crown root number (CN) will have shallower rooting depth and improved P acquisition from low-P soils. Maize recombinant inbred lines with contrasting CN were evaluated under suboptimal P availability in greenhouse mesocosms and the field. Under P stress in mesocosms, the large-CN phenotype had 48% greater root respiration, 24% shallower rooting depth, 32% greater root length density in the topsoil, 37% greater leaf P concentration, 48% greater leaf photosynthesis, 33% greater stomatal conductance, and 44% greater shoot biomass than the small-CN phenotype. Under P stress in the field, the large-CN phenotype had 32% shallower rooting depth, 51% greater root length density in the topsoil, 44% greater leaf P concentration, 18% greater leaf photosynthesis, 21% greater stomatal conductance, 23% greater shoot biomass at anthesis, and 28% greater yield than the small-CN phenotype. These results support the hypothesis that large CN improves plant P acquisition from low-P soils by reducing rooting depth and increasing topsoil foraging. The large-CN phenotype merits consideration as a selection target to improve P capture in maize and possibly other cereal crops.
14 show abstract
The flowering time of higher plants is controlled by environmental cues and intrinsic signals. In Arabidopsis (Arabidopsis thaliana), flowering is accelerated by exposure to long-day conditions via the key photoperiod-induced factor FLOWERING LOCUS T (FT). Nuclear Factor-Y subunit C (NF-YC) proteins function as important mediators of epigenetic marks in different plant developmental stages and play an important role in the regulation of FT transcription, but the mechanistic details of this remain unknown. In this study, we show that Arabidopsis NF-YC homologs temporally interact with the histone methyltransferase CURLY LEAF (CLF) during the flowering transition. The binding of NF-YC antagonizes the association of CLF with chromatin and the CLF-dependent deposition of H3 lysine-27 trimethylation, thus relieving the repression of FT transcription and facilitating flowering under long-day conditions. Our findings reveal a novel mechanism of NF-YC/CLF-mediated epigenetic regulation of FT activation in photoperiod-induced flowering and, consequently, contribute to our understanding of how plants control developmental events in a temporal-specific regulatory manner.
15 show abstract
Arogenate dehydratase (ADT) catalyzes the final step of phenylalanine (Phe) biosynthesis. Previous work showed that ADT-deficient Arabidopsis (Arabidopsis thaliana) mutants had significantly reduced lignin contents, with stronger reductions in lines that had deficiencies in more ADT isoforms. Here, by analyzing Arabidopsis ADT mutants using our phenomics facility and ultra-performance liquid chromatography-mass spectrometry-based metabolomics, we describe the effects of the modulation of ADT on photosynthetic parameters and secondary metabolism. Our data indicate that a reduced carbon flux into Phe biosynthesis in ADT mutants impairs the consumption of photosynthetically produced ATP, leading to an increased ATP/ADP ratio, the overaccumulation of transitory starch, and lower electron transport rates. The effect on electron transport rates is caused by an increase in proton motive force across the thylakoid membrane that down-regulates photosystem II activity by the high-energy quenching mechanism. Furthermore, quantitation of secondary metabolites in ADT mutants revealed reduced flavonoid, phenylpropanoid, lignan, and glucosinolate contents, including glucosinolates that are not derived from aromatic amino acids, and significantly increased contents of putative galactolipids and apocarotenoids. Additionally, we used real-time atmospheric monitoring mass spectrometry to compare respiration and carbon fixation rates between the wild type and adt3/4/5/6, our most extreme ADT knockout mutant, which revealed no significant difference in both night- and day-adapted plants. Overall, these data reveal the profound effects of altered ADT activity and Phe metabolism on secondary metabolites and photosynthesis with implications for plant improvement.
16 show abstract
In plants, an individually darkened leaf initiates senescence much more rapidly than a leaf from a whole darkened plant. Combining transcriptomic and metabolomic approaches in Arabidopsis (Arabidopsis thaliana), we present an overview of the metabolic strategies that are employed in response to different darkening treatments. Under darkened plant conditions, the perception of carbon starvation drove a profound metabolic readjustment in which branched-chain amino acids and potentially monosaccharides released from cell wall loosening became important substrates for maintaining minimal ATP production. Concomitantly, the increased accumulation of amino acids with a high nitrogen-carbon ratio may provide a safety mechanism for the storage of metabolically derived cytotoxic ammonium and a pool of nitrogen for use upon returning to typical growth conditions. Conversely, in individually darkened leaf, the metabolic profiling that followed our 13C-enrichment assays revealed a temporal and differential exchange of metabolites, including sugars and amino acids, between the darkened leaf and the rest of the plant. This active transport could be the basis for a progressive metabolic shift in the substrates fueling mitochondrial activities, which are central to the catabolic reactions facilitating the retrieval of nutrients from the senescing leaf. We propose a model illustrating the specific metabolic strategies employed by leaves in response to these two darkening treatments, which support either rapid senescence or a strong capacity for survival.
17 show abstract
Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis (Arabidopsis thaliana) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis.
18 show abstract
Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b. In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9. GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110. Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.
19 show abstract
Diacylglyceryl-N,N,N-trimethylhomo-Ser (DGTS) is a nonphosphorous, polar glycerolipid that is regarded as analogous to the phosphatidylcholine in bacteria, fungi, algae, and basal land plants. In some species of algae, including the stramenopile microalga Nannochloropsis oceanica, DGTS contains an abundance of eicosapentaenoic acid (EPA), which is relatively scarce in phosphatidylcholine, implying that DGTS has a unique physiological role. In this study, we addressed the role of DGTS in N. oceanica. We identified two DGTS biosynthetic enzymes that have distinct domain configurations compared to previously identified DGTS synthases. Mutants lacking DGTS showed growth retardation under phosphate starvation, demonstrating a pivotal role for DGTS in the adaptation to this condition. Under normal conditions, DGTS deficiency led to an increase in the relative amount of monogalactosyldiacylglycerol, a major plastid membrane lipid with high EPA content, whereas excessive production of DGTS induced by gene overexpression led to a decrease in monogalactosyldiacylglycerol. Meanwhile, lipid analysis of partial phospholipid-deficient mutants revealed a role for phosphatidylcholine and phosphatidylethanolamine in EPA biosynthesis. These results suggest that DGTS and monogalactosyldiacylglycerol may constitute the two major pools of EPA in extraplastidic and plastidic membranes, partially competing to acquire EPA or its precursors derived from phospholipids. The mutant lacking DGTS also displayed impaired growth and a lower proportion of EPA in extraplastidic compartments at low temperatures. Our results indicate that DGTS is involved in the adaptation to low temperatures through a mechanism that is distinct from the DGTS-dependent adaptation to phosphate starvation in N. oceanica.
20 show abstract
Iron (Fe) is an essential mineral nutrient and an important factor for the composition of natural plant communities. Low Fe availability in aerated soils with neutral or alkaline pH has led to the evolution of elaborate mechanisms that extract Fe from the soil solution. In Arabidopsis (Arabidopsis thaliana), Fe is acquired by an orchestrated strategy that comprises mobilization, chelation, and reduction of Fe3+ prior to its uptake. Here, we show that At3g12900, previously annotated as scopoletin 8-hydroxylase (S8H), participates in Fe acquisition by mediating the biosynthesis of fraxetin (7,8-dihydroxy-6-methoxycoumarin), a coumarin derived from the scopoletin pathway. S8H is highly induced in roots of Fe-deficient plants both at the transcript and protein levels. Mutants defective in the expression of S8H showed increased sensitivity to growth on pH 7.0 media supplemented with an immobile source of Fe and reduced secretion of fraxetin. Transgenic lines overexpressing S8H exhibited an opposite phenotype. Homozygous s8h mutants grown on media with immobilized Fe accumulated significantly more scopolin, the storage form of scopoletin, supporting the designated function of S8H in scopoletin hydroxylation. Fraxetin exhibited Fe-reducing properties in vitro with higher rates being observed at neutral relative to acidic pH. Supplementing the media containing immobile Fe with fraxetin partially rescued the s8h mutants. In natural Arabidopsis accessions differing in their performance on media containing immobilized Fe, the amount of secreted fraxetin was highly correlated with growth and Fe and chlorophyll content, indicating that fraxetin secretion is a decisive factor for calcicole-calcifuge behavior (i.e. the ability/inability to thrive on alkaline soils) of plants.
21 show abstract
The first committed step in fatty acid synthesis is mediated by acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that carboxylates acetyl-CoA to produce malonyl-CoA. ACCase can be feedback regulated by short-term or long-term exposure to fatty acids in the form of Tween 80 (predominantly containing oleic acid), which results in reversible or irreversible ACCase inhibition, respectively. Biotin attachment domain-containing (BADC) proteins are inactive analogs of biotin carboxyl transfer proteins that lack biotin, and their incorporation into ACCase down-regulates its activity by displacing active (biotin-containing) biotin carboxyltransferase protein subunits. Arabidopsis (Arabidopsis thaliana) lines containing T-DNA insertions in BADC1, BADC2, and BADC3 were used to generate badc1 badc2 and badc1 badc3 double mutants. The badc1 badc3 mutant exhibited normal growth and development; however, ACCase activity was 26% higher in badc1 badc3 and its seeds contained 30.1% more fatty acids and 32.6% more triacylgycerol relative to wild-type plants. To assess whether BADC contributes to the irreversible phase of ACCase inhibition, cell suspension cultures were generated from the leaves of badc1 badc3 and wild-type plants and treated with 10 mm Tween 80. Reversible ACCase inhibition was similar in badc1 badc3 and wild-type cultures after 2 d of Tween 80 treatment, but irreversible inhibition was reduced by 50% in badc1 badc3 relative to wild-type plants following 4 d of Tween 80 treatment. In this study, we present evidence for two important homeostatic roles for BADC proteins in down-regulating ACCase activity: by acting during normal growth and development and by contributing to its long-term irreversible feedback inhibition resulting from the oversupply of fatty acids.
22 show abstract
Pollen tube growth is an essential step for successful plant reproduction. Vacuolar trafficking and dynamic organization are important for pollen tube growth; however, the key proteins involved in these processes are not well understood. Here, we report that the ADAPTOR PROTEIN-3 (AP-3) complex and its tonoplast cargo PROTEIN S-ACYL TRANSFERASE10 (PAT10) are critical for pollen tube growth in Arabidopsis (Arabidopsis thaliana). AP-3 is a heterotetrameric protein complex consisting of four subunits, , β, µ, and . AP-3 regulates tonoplast targeting of several cargoes, such as PAT10. We show that functional loss of any of the four AP-3 subunits reduces plant fertility. In ap-3 mutants, pollen development was normal but pollen tube growth was compromised, leading to reduced male transmission. Functional loss of PAT10 caused a similar reduction in pollen tube growth, suggesting that the tonoplast association of PAT10 mediated by AP-3 is crucial for this process. Indeed, the Ca2+ gradient during pollen tube growth was reduced significantly due to AP-3 loss of function, consistent with the abnormal targeting of CALCINUERIN B-LIKE2 (CBL2) and CBL3, whose tonoplast association depends on PAT10. Furthermore, we show that the pollen tubes of ap-3 mutants have vacuoles with simplified tubules and bulbous structures, indicating that AP-3 affects vacuolar organization. Our results demonstrate a role for AP-3 in plant reproduction and provide insights into the role of vacuoles in polarized cell growth.
23 show abstract
The regulated transport of mRNAs from the cell nucleus to the cytosol is a critical step linking transcript synthesis and processing with translation. However, in plants, only a few of the factors that act in the mRNA export pathway have been functionally characterized. Flowering plant genomes encode several members of the ALY protein family, which function as mRNA export factors in other organisms. Arabidopsis (Arabidopsis thaliana) ALY1 to ALY4 are commonly detected in root and leaf cells, but they are differentially expressed in reproductive tissue. Moreover, the subnuclear distribution of ALY1/2 differs from that of ALY3/4. ALY1 binds with higher affinity to single-stranded RNA than double-stranded RNA and single-stranded DNA and interacts preferentially with 5-methylcytosine-modified single-stranded RNA. Compared with the full-length protein, the individual RNA recognition motif of ALY1 binds RNA only weakly. ALY proteins interact with the RNA helicase UAP56, indicating a link to the mRNA export machinery. Consistently, ALY1 complements the lethal phenotype of yeast cells lacking the ALY1 ortholog Yra1. Whereas individual aly mutants have a wild-type appearance, disruption of ALY1 to ALY4 in 4xaly plants causes vegetative and reproductive defects, including strongly reduced growth, altered flower morphology, as well as abnormal ovules and female gametophytes, causing reduced seed production. Moreover, polyadenylated mRNAs accumulate in the nuclei of 4xaly cells. Our results highlight the requirement of efficient mRNA nucleocytosolic transport for proper plant growth and development and indicate that ALY1 to ALY4 act partly redundantly in this process; however, differences in expression and subnuclear localization suggest distinct functions.
24 show abstract
Protein storage vacuoles (PSV) are the main repository of protein in dicotyledonous seeds, but little is known about the origins of these transient organelles. PSV are hypothesized to either arise de novo or originate from the preexisting embryonic vacuole (EV) during seed maturation. Here, we tested these hypotheses by studying PSV formation in Arabidopsis (Arabidopsis thaliana) embryos at different stages of seed maturation and recapitulated this process in Arabidopsis leaves reprogrammed to an embryogenic fate by inducing expression of the LEAFY COTYLEDON2 transcription factor. Confocal and immunoelectron microscopy indicated that both storage proteins and tonoplast proteins typical of PSV were delivered to the preexisting EV in embryos or to the lytic vacuole in reprogrammed leaf cells. In addition, sectioning through embryos at several developmental stages using serial block face scanning electron microscopy revealed the 3D architecture of forming PSV. Our results indicate that the preexisting EV is reprogrammed to become a PSV in Arabidopsis.
25 show abstract
For successful fertilization in angiosperms, rapid tip growth in pollen tubes delivers the male gamete into the ovules. The actin-binding protein-mediated organization of the actin cytoskeleton within the pollen tube plays a crucial role in this polarized process. However, the mechanism underlying the polarity of the actin filament (F-actin) array and behaviors in pollen tube growth remain largely unknown. Here, we demonstrate that an actin-organizing protein, Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), controls pollen tube growth by modulating the polarity and distribution of the F-actin array. The rice rmd mutant exhibits abnormal pollen tube growth and a decreased germination rate of the pollen grain in vitro and in vivo. The rmd pollen tubes display a disorganized F-actin pattern with disrupted apical actin density and shank longitudinal cable direction/arrangement, indicating the novel role of RMD in F-actin polarity during tip growth. Consistent with this role, RMD localizes at the tip of the rice pollen tube, which is essential for pollen tube growth and polarity as well as F-actin organization. Furthermore, the direction and characteristics of the RMD-guided F-actin array positively regulate the deposition of cell wall components and the pattern and velocity of cytoplasmic streaming during rice pollen tube growth. Collectively, our results suggest that RMD is essential for the spatial regulation of pollen tube growth via modulating F-actin organization and array orientation in rice. This work provides insights into tip-focused cell growth and polarity.
26 show abstract
Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue.
27 show abstract
Early endosperm development presents a unique system in which to uncover epigenetic regulatory mechanisms because the contributing maternal and paternal genomes possess differential epigenetic modifications. In Arabidopsis (Arabidopsis thaliana), the initiation of endosperm coenocytic growth upon fertilization and the transition to endosperm cellularization are regulated by the FERTILIZATION-INDEPENDENT SEED (FIS)-Polycomb Repressive Complex 2 (PRC2), a putative H3K27 methyltransferase. Here, we address the possible role of the FIS-PRC2 complex in regulating the type I MADS-box gene family, which has been shown previously to regulate early endosperm development. We show that a subclass of type I MADS-box genes (C2 genes) was expressed in distinct domains of the coenocytic endosperm in wild-type seeds. Furthermore, the C2 genes were mostly up-regulated biallelically during the extended coenocytic phase of endosperm development in the FIS-PRC2 mutant background. Using allele-specific expression analysis, we also identified a small subset of C2 genes subjected to FIS-PRC2-dependent maternal or FIS-PRC2-independent paternal imprinting. Our data support a dual role for the FIS-PRC2 complex in the regulation of C2 type I MADS-box genes, as evidenced by a generalized role in the repression of gene expression at both alleles associated with endosperm cellularization and a specialized role in silencing the maternal allele of imprinted genes.
28 show abstract
The chloroplast and mitochondrial genomes are essential for photosynthesis and respiration, respectively. RECA and RECG, which are plant-specific homologs of the bacterial homologous recombination repair proteins RecA and RecG, maintain organelle genome stability by suppressing aberrant recombination between short dispersed repeats (SDRs) in the moss Physcomitrella patens. In this study, we analyzed the plant-specific factor RECX, a homolog of bacterial RecX that regulates RecA. RECX fused to GFP colocalized with mitochondrial RECA1 and chloroplast RECA2 on mitochondrial and chloroplast nucleoids, respectively. Knockout (KO) and overexpression (OEX) of RECX did not alter the P. patens morphological phenotype. Analysis of mitochondrial DNA, however, showed that products from recombination between SDRs increased significantly in RECX OEX mitochondria and modestly in RECX KO mitochondria. By contrast, analysis of chloroplast DNA revealed no substantial alteration in the number of products from recombination between SDRs in RECX KO and OEX chloroplasts. Yeast two-hybrid analysis revealed interactions between RECX and RECA1 and between RECX and RECA2. Expression profiles showed a positive correlation between RECX and factors maintaining the stability of both organelle genomes and RECA1. Collectively, these results suggest that RECX maintains mitochondrial genome stability, likely by modulating RECA1 activity, and that the compromised function of RECX induces mitochondrial genome instability.
29 show abstract
Despite intensive searches, few proteins involved in telomere homeostasis have been identified in plants. Here, we used pull-down assays to identify potential telomeric interactors in the model plant species Arabidopsis (Arabidopsis thaliana). We identified the candidate protein GH1-HMGA1 (also known as HON4), an uncharacterized linker histone protein of the High Mobility Group Protein A (HMGA) family in plants. HMGAs are architectural transcription factors and have been suggested to function in DNA damage repair, but their precise biological roles remain unclear. Here, we show that GH1-HMGA1 is required for efficient DNA damage repair and telomere integrity in Arabidopsis. GH1-HMGA1 mutants exhibit developmental and growth defects, accompanied by ploidy defects, increased telomere dysfunction-induced foci, mitotic anaphase bridges, and degraded telomeres. Furthermore, mutants have a higher sensitivity to genotoxic agents such as mitomycin C and -irradiation. Our work also suggests that GH1-HMGA1 is involved directly in the repair process by allowing the completion of homologous recombination.
30 show abstract
VESICLE-INDUCING PROTEIN IN PLASTID1 (VIPP1) is conserved among oxygenic photosynthetic organisms and appears to have diverged from the bacterial PspA protein. VIPP1 localizes to the chloroplast envelope and thylakoid membrane, where it forms homooligomers of high molecular mass. Although multiple roles of VIPP1 have been inferred, including thylakoid membrane formation, envelope maintenance, membrane fusion, and regulation of photosynthetic activity, its precise role in chloroplast membrane quality control remains unknown. VIPP1 forms an oligomer through its amino-terminal domain and triggers membrane fusion in an Mg2+-dependent manner. We previously demonstrated that Arabidopsis (Arabidopsis thaliana) VIPP1 also exhibits dynamic complex disassembly in response to osmotic and heat stresses in vivo. These results suggest that VIPP1 mediates membrane fusion/remodeling in chloroplasts. Considering that protein machines that regulate intracellular membrane fusion/remodeling events often require a capacity for GTP binding and/or hydrolysis, we questioned whether VIPP1 has similar properties. We conducted an in vitro assay using a purified VIPP1-His fusion protein expressed in Escherichia coli cells. VIPP1-His showed GTP hydrolysis activity that was inhibited competitively by an unhydrolyzable GTP analog, GTPS, and that depends on GTP binding. It is particularly interesting that the ancestral PspA from E. coli also possesses GTP hydrolysis activity. Although VIPP1 does not contain a canonical G domain, the amino-terminal α-helix was found to be important for both GTP binding and GTP hydrolysis as well as for oligomer formation. Collectively, our results reveal that the properties of VIPP1/PspA are similar to those of GTPases.
31 show abstract
Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry (Fragaria ananassa), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S-adenosyl-l-Met decarboxylase gene (FaSAMDC), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a K
d of 1.7 x 10–3 m. In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening.
32 show abstract
MicroRNAs play crucial roles in plant responses to pathogen infections. The rice blast disease, caused by the fungus Magnaporthe oryzae, is the most important disease of rice (Oryza sativa). To explore the microRNA species that participate in rice immunity against the rice blast disease, we compared the expression of small RNAs between mock- and M. oryzae-treated rice. We found that infection by M. oryzae strain Guy11 specifically induced the expression of rice miR319 and, consequently, suppressed its target gene TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (OsTCP21), which encodes a transcription factor. Using transgenic rice that overexpresses miR319b (OE) or expresses OsTCP21-Res (which is resistant to miR319-mediated silencing), we found that OsTCP21 is a positive regulator of the rice defense response against the blast disease. When wild-type and miR319b-OE rice were infected by Guy11, multiple jasmonic acid (JA) synthetic and signaling components were suppressed, indicating that Guy11 suppresses JA signaling through inducing miR319. In particular, we found that LIPOXYGENASE2 (LOX2) and LOX5 were specifically suppressed by miR319 overexpression or by Guy11 infection. LOXs are the key enzymes of JA synthesis, which catalyze the conversion of α-linoleic acid to hydroperoxy-octadecadienoic acid. The application of α-linoleic acid rescued disease symptoms on the OsTCP21-Res rice but not wild-type rice, supporting our hypothesis that OsLOX2 and OsLOX5 are the key JA synthesis genes hijacked by Guy11 to subvert host immunity and facilitate pathogenicity. We propose that induced expression of OsLOX2/5 may improve resistance to the rice blast disease.
33 show abstract
B-box (BBX) proteins are zinc-finger transcription factors containing one or two B-box motifs. BBX proteins act as key factors in the networks regulating growth and development. The relevance of BBX21 to light and abscisic acid signaling in seedling development is well established; however, its importance in adult plant development and agronomic species is poorly understood. Therefore, we studied the effect of heterologous expression of Arabidopsis (Arabidopsis thaliana) BBX21 in potato (Solanum tuberosum) var Spunta. Three independent AtBBX21-expressing lines and the wild-type control were cultivated under sunlight and at controlled temperatures in a greenhouse. By anatomical, physiological, biochemical, and gene expression analysis, we demonstrated that AtBBX21-expressing plants were more robust and produced more tubers than wild-type plants. Interestingly, AtBBX21-expressing plants had higher rates of photosynthesis, with a significant increase in photosynthetic gene expression, and higher stomatal conductance, with increased size of the stomatal opening, without any associated decline in water use efficiency. Furthermore, AtBBX21-expressing potato plants had reduced photoinhibition associated with higher production of anthocyanins and phenolic compounds, and higher expression of genes in the phenylpropanoid biosynthesis pathway. To gain insights into the mechanism of BBX21, we evaluated the molecular, morphological, metabolic, and photosynthetic behavior in adult BBX21-overexpressing Arabidopsis. We conclude that BBX21 overexpression improved morphological and physiological attributes, and photosynthetic rates in nonoptimal, high-irradiance conditions, without associated impairment of water use efficiency. These characteristics of BBX21 may be useful for increasing production of potatoes, and potentially of other crops.
34 show abstract
Ribosome biogenesis is crucial for plant growth and environmental acclimation. Processing of ribosomal RNAs (rRNAs) is an essential step in ribosome biogenesis and begins with transcription of the rDNA. The resulting precursor-rRNA (pre-rRNA) transcript undergoes systematic processing, where multiple endonucleolytic and exonucleolytic cleavages remove the external and internal transcribed spacers (ETS and ITS). The processing sites and pathways for pre-rRNA processing have been deciphered in Saccharomyces cerevisiae and, to some extent, in Xenopus laevis, mammalian cells, and Arabidopsis (Arabidopsis thaliana). However, the processing sites and pathways remain largely unknown in crops, particularly in monocots such as rice (Oryza sativa), one of the most important food resources in the world. Here, we identified the rRNA precursors produced during rRNA biogenesis and the critical endonucleolytic cleavage sites in the transcribed spacer regions of pre-rRNAs in rice. We further found that two pre-rRNA processing pathways, distinguished by the order of 5' ETS removal and ITS1 cleavage, coexist in vivo. Moreover, exposing rice to chilling stress resulted in the inhibition of rRNA biogenesis mainly at the pre-rRNA processing level, suggesting that these energy-intensive processes may be reduced to increase acclimation and survival at lower temperatures. Overall, our study identified the pre-rRNA processing pathway in rice and showed that ribosome biogenesis is quickly inhibited by low temperatures, which may shed light on the link between ribosome biogenesis and environmental acclimation in crop plants.
35 show abstract
Plant pathogens deliver effectors to manipulate processes in their hosts, creating a suitable environment for invasion and proliferation. Yet, little is known about the host proteins that are targeted by effectors from filamentous pathogens. Here, we show that stable transgenic expression in potato (Solanum tuberosum) and transient expression in Nicotiana benthamiana of the arginine-any amino acid-leucine-arginine effector Pi17316 enhances leaf colonization by the late blight pathogen Phytophthora infestans. Expression of Pi17316 also attenuates cell death triggered by the pathogen-associated molecular pattern Infestin1 (INF1), indicating that the effector suppresses pattern-triggered immunity. However, this effector does not attenuate cell death triggered by a range of resistance proteins, showing that it specifically suppresses INF1-triggered cell death (ICD). In yeast two-hybrid assays, Pi17316 interacts directly with the potato ortholog of VASCULAR HIGHWAY1-interacting kinase (StVIK), encoding a predicted MEK kinase (MAP3K). Interaction in planta was confirmed by coimmunoprecipitation and occurs at the plant plasma membrane. Virus-induced gene silencing of VIK in N. benthamiana attenuated P. infestans colonization, whereas transient overexpression of StVIK enhanced colonization, indicating that this host protein acts as a susceptibility factor. Moreover, VIK overexpression specifically attenuated ICD, indicating that it is a negative regulator of immunity. The abilities of Pi17316 to enhance P. infestans colonization or suppress ICD were compromised significantly in NbVIK-silenced plants, demonstrating that the effector activity of Pi17316 is mediated by this MAP3K. Thus, StVIK is exploited by P. infestans as a susceptibility factor to promote late blight disease.
36 show abstract
2',3'-cAMP is an intriguing small molecule that is conserved among different kingdoms. 2',3'-cAMP is presumably produced during RNA degradation, with increased cellular levels observed especially under stress conditions. Previously, we observed the presence of 2',3'-cAMP in Arabidopsis (Arabidopsis thaliana) protein complexes isolated from native lysate, suggesting that 2',3'-cAMP has potential protein partners in plants. Here, affinity purification experiments revealed that 2',3'-cAMP associates with the stress granule (SG) proteome. SGs are aggregates composed of protein and mRNA, which enable cells to selectively store mRNA for use in response to stress such as heat whereby translation initiation is impaired. Using size-exclusion chromatography and affinity purification analyses, we identified Rbp47b, the key component of SGs, as a potential interacting partner of 2',3'-cAMP. Furthermore, SG formation was promoted in 2',3'-cAMP-treated Arabidopsis seedlings, and interactions between 2',3'-cAMP and RNA-binding domains of Rbp47b, RRM2 and RRM3, were confirmed in vitro using microscale thermophoresis. Taken together, these results (1) describe novel small-molecule regulation of SG formation, (2) provide evidence for the biological role of 2',3'-cAMP, and (3) demonstrate an original biochemical pipeline for the identification of protein-metabolite interactors.
37 show abstract
An advanced functional understanding of omics data is important for elucidating the design logic of physiological processes in plants and effectively controlling desired traits in plants. We present the latest versions of the Predicted Arabidopsis Interactome Resource (PAIR) and of the gene set linkage analysis (GSLA) tool, which enable the interpretation of an observed transcriptomic change (differentially expressed genes [DEGs]) in Arabidopsis (Arabidopsis thaliana) with respect to its functional impact for biological processes. PAIR version 5.0 integrates functional association data between genes in multiple forms and infers 335,301 putative functional interactions. GSLA relies on this high-confidence inferred functional association network to expand our perception of the functional impacts of an observed transcriptomic change. GSLA then interprets the biological significance of the observed DEGs using established biological concepts (annotation terms), describing not only the DEGs themselves but also their potential functional impacts. This unique analytical capability can help researchers gain deeper insights into their experimental results and highlight prospective directions for further investigation. We demonstrate the utility of GSLA with two case studies in which GSLA uncovered how molecular events may have caused physiological changes through their collective functional influence on biological processes. Furthermore, we showed that typical annotation-enrichment tools were unable to produce similar insights to PAIR/GSLA. The PAIR version 5.0-inferred interactome and GSLA Web tool both can be accessed at http://public.synergylab.cn/pair/.
38 show abstract

Article URL: http://www.plantphysiol.org/cgi/content/short/177/1/434?rss=1
Citation: Vol 177 No. 1 (2018) pp 434 434
Publication Date: 2018-05-02T08:25:45-07:00
Journal: Plant Physiology

Green Open Access

Sherpa/Romeo info

Author can archive pre-print (ie pre-refereeing)
Author can archive post-print (ie final draft post-refereeing)
Author cannot archive publisher's version/PDF
  • Author's pre-print on pre-print servers or Biorxiv.
  • On author's personal website and institutional repository
  • State that pre-print is under review/accepted
  • Remove pre-print on publication and replace with toll-free link to publisher version
  • If funding agency rules apply, authors may post articles in PubMed Central 12 months after publication
  • Must link to publisher version, toll-free link provided
  • Publisher's version/PDF cannot be used
  • Publisher last reviewed on 04/07/2016
  • Publisher last contacted on 28/06/2016

More Sherpa/Romeo information

APC Discount

For this journal no deals have been made concerning APC discount

More information on Open Access publishing


Journal Citation Reports

This information is only available when you log on as a WUR user !

Scopus Journal Metrics (2017)

SJR: 3.690
SNIP: 1.598
Impact (Scopus CiteScore): 0.601
Quartile: Q1
CiteScore percentile: 97%
CiteScore rank: 8 out of 389
Cited by WUR staff: 2868 times. (2016-2018)

Similar journals  

  • Plant cell
  • The plant journal : for cell and molecular biolog
  • Proceedings of the national academy of sciences o...
  • Journal of experimental botany
  • Nature

  • More...
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.