Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 109416
Title Temperature control in a continuously mixed bioreactor for solid-state fermentation
Author(s) Nagel, F.J.J.I.; Tramper, J.; Bakker, M.S.N.; Rinzema, A.
Source Biotechnology and Bioengineering 72 (2001)2. - ISSN 0006-3592 - p. 219 - 230.
DOI https://doi.org/10.1002/1097-0290(20000120)72:2<219::AID-BIT10>3.0.CO;2-T
Department(s) Sub-department of Food and Bioprocess Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract A continuously mixed, aseptic paddle mixer was used successfully for solid-state fermentation (SSF) with Aspergillus oryzae on whole wheat kernels. Continuous mixing improved temperature control and prevented inhomogeneities in the bed. Respiration rates found in this system were comparable to those in small, isothermal, unmixed beds, which showed that continuous mixing did not cause serious damage to the fungus or the wheat kernels. Continuous mixing improves heat transport to the bioreactor wall, which reduces the need for evaporative cooling and thus may help to prevent the desiccation problems that hamper large-scale SSF. However, scale-up calculations for the paddle mixer indicated that wall cooling becomes insufficient at the 2-m3 scale for a rapidly growing fungus like Aspergillus oryzae. Consequently, evaporative cooling will remain important in large-scale mixed systems. Experiments showed that water addition will be necessary when evaporative cooling is applied in order to maintain a sufficiently high water activity of the solid substrate. Mixing is necessary to ensure homogeneous water addition in SSF. Automated process control might be achieved using the enthalpy balance. The enthalpy balance for the case of evaporative cooling in the paddle mixer was validated. This work shows that continuous mixing provides promising possibilities for simultaneous control of temperature and moisture content in solid-state fermentation on a large scale.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.