Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 109441
Title Competition for light and nitrogen among grassland species: a simulation analysis
Author(s) Schippers, P.; Kropff, M.J.
Source Functional Ecology 15 (2001). - ISSN 0269-8463 - p. 155 - 164.
Department(s) Crop and Weed Ecology
Plant Ecology and Nature Conservation
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract 1. A plant competition model to analyse the competition among perennial grassland species was developed. It was used to find out whether complex perennial competition processes could be simulated accurately on the basis of ecophysiological principles; what crucial parameters and processes determine succession; and how spatial heterogeneity affects interspecies competition for light and nitrogen. 2. Simulation results were compared with results of a 2-year replacement experiment involving Holcus lanatus, Anthoxanthum odoratum and Festuca ovina. Sensitivity analyses were performed to evaluate the importance of processes and parameters. 3. The model's sensitivity to plant height, specific leaf area and turnover and the large interspecific differences indicated that these were key determinants of competition between species. Festuca's low shoot turnover enabled it to survive the winter better and gave it an advantage in spring; this resulted in an unexpected recovery after winter in the second year. 4. Spatially explicit simulations showed that species patchiness reduced competitive asymmetry, especially under nutrient-poor conditions. 5. The model's ability to simulate complex perennial competition processes as observed in the experiment indicates its potential for analysing vegetation processes related to succession
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.