Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 109656
Title Competition and crop performance in a leek-celery intercropping system
Author(s) Baumann, D.T.; Bastiaans, L.; Kropff, M.J.
Source Crop Science 41 (2001)3. - ISSN 0011-183X - p. 764 - 774.
DOI https://doi.org/10.2135/cropsci2001.413764x
Department(s) Crop and Weed Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract In an intercropping system with leek (Allium porrum L.) and celery (Apium graveolens L. var. dulce (Mill.) Pers.), weed suppression is improved through increased canopy light interception. Intra- and interspecific competition in the system, however, affects the performance of the crops with respect to yield and quality. The objective of the study was to quantify intra- and interspecific competition by leek and celeriac [Apium graveolens L. var. rapaceum (Mill.) Gaud.-Beaup] or celery in an intercropping system. A 3 yr study was carried out to investigate the effects of plant density, relative proportion of component crop, spatial arrangement, and N input on biomass production, crop quality, and N use in an intercropping system with leek and celeriac or celery. Land equivalent ratios exceeding unity were found, indicating an improved resource use by the crop mixture. Relative yield totals around one showed that with respect to biomass production, no yield advantage was found in the crop mixture. Analyses using a hyperbolic yield density response model showed that the competitive ability of celeriac and celery was significantly higher than that of leek. Effects of intra- and interspecific competition resulted for both crops in a reduction of the quality. Nitrogen utilization efficiency (E U) was generally poor in all crop stands, particularly at a high N application rate. The intercropping system needs improvement with respect to crop quality, and it is suggested to apply ecophysiological crop growth models to maximize crop complementarity and competitive ability against weeds.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.