Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 109926
Title Multiple allelism as a control mechanism in metabolic pathways: GBSSI allelic composition affects the activity of granule-bound starch synthase I and starch composition in potato
Author(s) Wal, M.H.B.J. van de; Jacobsen, E.; Visser, R.G.F.
Source Molecular Genetics and Genomics 265 (2001). - ISSN 1617-4615 - p. 1011 - 1021.
DOI https://doi.org/10.1007/s004380100496
Department(s) Plant Breeding
EPS
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract Multiple allelism in heterozygous autopolyploid species like potato not only occurs for genes that affect morphological characteristics but also for genes involved in metabolic pathways. Based on a combination of Southern and PCR analyses, at least eight alleles encoding granule-bound starch synthase I (GBSSI), which is responsible for amylose biosynthesis, have been identified in potato. These alleles were grouped into four classes, distinguishable by Southern analysis, and subdivided based on PCR. Despite the heterozygous and polyploid character of potato it was possible to assign variation in GBSSI activity to the allelic composition at the GBSSI loci within a large population of Solanum tuberosum cultivars and Solanum breeding lines. Moreover, the availability of an amf allele made it possible to reduce heterogeneity and enabled us to demonstrate an effect of GBSSI allelic composition on amylose content. The major difference between the alleles identified was the absence or presence of a 140-bp fragment at a site 0.5 kb upstream of the ATG start codon of the gene for GBSSI. The absence of this 140-bp fragment had a major effect on GBSSI activity and amylose content, while the presence of small deletions and simple sequence repeats had no obvious effect.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.