Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 109989
Title Modeling temperature- and radiation-driven leaf area expansion in the contrasting crops potato and wheat
Author(s) Delden, A. van; Kropff, M.J.; Haverkort, A.J.
Source Field Crops Research 72 (2001). - ISSN 0378-4290 - p. 119 - 142.
Department(s) Crop and Weed Ecology
PRI Crop and Production Ecology
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract The performance of a model for simulating increase in leaf area index (L) was evaluated for potato (Solanum tuberosum L.) and wheat (Triticum aestivum L.) cultivars across environments (years and sites). Rate of L expansion just after emergence was assumed to depend on temperature. After a predefined L, Ls, expansion was assumed to increase in proportion to leaf dry weight increase that depended on intercepted radiation, henceforward: radiation-limited expansion. The Ls value at which the model performed best was considered to be the most realistic L at which expansion shifts from temperature to radiation-limitation. An Ls value of zero leads to solely radiation-limited expansion, whereas a value larger than maximum L leads to solely temperature-limited expansion. The criteria used to evaluate the model were constancy of calibrated model parameters across environments, and predictive ability. For potato and wheat, parameters were most robust across environments, when Ls was neither zero nor at maximum L. Model parameters did not vary with genotype. The model’s predictions were best at an Ls of 1.0 for potato and 1.5 for wheat. Using these Ls values, the coefficient of determination between observed and predicted values was 91% for potato and 88% for wheat. Sensitivity analysis revealed that smaller Ls values led to larger changes in rate of leaf area expansion and crop dry weight than larger values did. Crop dry weight was hardly affected by an increase in Ls. Implications of the results for modeling are discussed.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.