Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 110037
Title Modelling the response of wheat canopy assimilation to atmospheric CO2 concentrations.
Author(s) Rodriguez, D.; Ewert, F.; Goudriaan, J.; Manderscheid, R.; Burkart, S.; Weigel, H.J.
Source New Phytologist 150 (2001). - ISSN 0028-646X - p. 337 - 346.
DOI https://doi.org/10.1046/j.1469-8137.2001.00106.x
Department(s) Plant Production Systems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract The predictive capacity of two simulation models with different degrees of complexity for the calculation of assimilate production, was tested at different time scales, using a data set of wheat grown in an open-top-chamber experiment at two CO2 concentrations. Observed values of net canopy assimilation (Pn) were obtained from wheat plants grown at ambient (410 ?mol mol1) and elevated (680 ?mol mol1) CO2 mole fractions. Pn was simulated by using either simple multiple regression equations (AFRCWHEAT2) or by highly detailed calculations of leaf energy balances and the coupling of photosynthesis with stomatal conductance (LINTULCC2). Irrespective of the developmental stage of the crop or variation in weather, the models accurately simulated canopy assimilation and growth. We conclude that the response of aboveground-biomass production to elevated CO2 concentrations was explained primarily by the effects of CO2 on radiation-use efficiency and assimilate production. The models explained satisfactorily the daily course of Pn, its integrated daily totals, and the seasonally produced aboveground biomass, both at ambient and elevated CO2 concentrations. Specific problems in the simulations were identified and discussed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.