Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 110041
Title Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere
Author(s) Bodegom, P.M. van; Stams, F.; Mollema, L.; Boeke, S.; Leffelaar, P.A.
Source Applied and Environmental Microbiology 67 (2001). - ISSN 0099-2240 - p. 3586 - 3597.
DOI https://doi.org/10.1128/AEM.67.8.3586-3597.2001
Department(s) Microbiology
Plant Production Systems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract A mechanistic approach is presented to describe oxidation of the greenhouse gas methane in the rice rhizosphere of flooded paddies by obligate methanotrophic bacteria. In flooded rice paddies these methanotrophs compete for available O2 with other types of bacteria. Soil incubation studies and most-probable-number (MPN) counts of oxygen consumers show that microbial oxygen consumption rates were dominated by heterotrophic and methanotrophic respiration. MPN counts of methanotrophs showed large spatial and temporal variability. The most abundant methanotrophs (a Methylocystis sp.) and heterotrophs (a Pseudomonas sp. and a Rhodococcus sp.) were isolated and characterized. Growth dynamics of these bacteria under carbon and oxygen limitations are presented. Theoretical calculations based on measured growth dynamics show that methanotrophs were only able to outcompete heterotrophs at low oxygen concentrations (frequently <5 ?M). The oxygen concentration at which methanotrophs won the competition from heterotrophs did not depend on methane concentration, but it was highly affected by organic carbon concentrations in the paddy soil. Methane oxidation was severely inhibited at high acetate concentrations. This is in accordance with competition experiments between Pseudomonas spp. and Methylocystis spp. carried out at different oxygen and carbon concentrations. Likely, methane oxidation mainly occurs at microaerophilic and low-acetate conditions and thus not directly at the root surface. Acetate and oxygen concentrations in the rice rhizosphere are in the critical range for methane oxidation, and a high variability in methane oxidation rates is thus expected.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.