Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 110053
Title Modelling the biomechanics and control of sphincters
Author(s) Heldoorn, M.; Leeuwen, J.L. van; Vanderschoot, J.
Source Journal of Experimental Biology 204 (2001). - ISSN 0022-0949 - p. 4013 - 4022.
Department(s) Experimental Zoology
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2001
Abstract This paper reviews current mathematical models of sphincters and compares them with a new spatial neuromuscular control model based on known physiological properties. Almost all the sphincter models reviewed were constructed as a component of a more extensive model designed to mirror the overall behaviour of a larger system such as the lower urinary tract. This implied less detailed modelling of the sphincter component. It is concluded that current sphincter models are not suitable for mimicking detailed interactions between a neural controller and a sphincter. We therefore outline a new integrated model of the biomechanics and neural control of a sphincter. The muscle is represented as a lumped-mass model, providing the possibility of applying two- or three-dimensional modelling strategies. The neural network is a multi-compartment model that provides neural control signals at the level of action potentials. The integrated model was used to simulate a uniformly activated sphincter and a partially deficient innervation of the sphincter, resulting in a non-uniformly activated sphincter muscle. During the simulation, the pressure in the sphincter lumen was prescribed to increase sinusoidally to a value of 60kPa. In the uniformly activated situation, the sphincter muscle remains closed, whereas the partially denervated sphincter is stretched open, although the muscle is intact.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.