Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 110570
Title Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model
Author(s) Wiel, B.J.H. van de; Ronda, R.J.; Moene, A.F.; DeBruin, H.A.R.; Holtslag, A.A.M.
Source Journal of the Atmospheric Sciences 59 (2002). - ISSN 0022-4928 - p. 942 - 958.
DOI https://doi.org/10.1175/1520-0469(2002)059<0942:ITAOIT>2.0.CO;2
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2002
Abstract In the stable boundary layer (SBL) it is observed often that turbulence is not continuous in space and time. This discontinuous, intermittent turbulence causes alternations from the mean evolution of the stratified atmospheric boundary layer, which may result in an oscillatory type of behavior of the near-surface wind speed and temperature. It is well known that intermittent turbulence in the SBL can be generated by various mechanisms. This paper focuses on an intermittency generating mechanism that arises from a direct interaction of the lower atmosphere (first tens of meters) with the vegetation surface, without interaction with the air aloft. It is shown that the essence of this mechanism can be captured by a 1D bulk model of three coupled nonlinear differential equations. In the present paper, numerical runs with the model show that intermittent turbulence is most likely to occur over land surfaces with low vegetation during clear-sky conditions in the presence of a moderate to low synoptical pressure gradient. The existence of a vegetation layer has a strong influence on intermittency dynamics. Due to its small heat capacity, the vegetation temperature is able to quickly respond to rapidly changing conditions. This in turn affects the stability of the lower atmosphere, causing an important feedback mechanism. In addition, it was found that intermittent behavior of SBL models occurs for various first-order closure schemes with different stability functions. However, stability functions that allow turbulent transport beyond the critical Richardson number effectively suppress intermittent–oscillatory behavior. Currently, the latter type of formulations is often used in numerical weather prediction to prevent excessive SBL cooling in very stable conditions. The advantage of using a simplified SBL model, as proposed in the present paper, is that it allows an analytical study of the system, which, in turn, allows theoretical predictions about the occurrence of intermittent SBL behavior (see the companion paper).
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.