Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 31330
Title Biological activity of triazole fungicides towards Botrytis cinerea
Author(s) Stehmann, C.
Source Agricultural University. Promotor(en): P.J.G.M. de Wit; M.A. de Waard. - S.l. : Stehmann - ISBN 9789054853671 - 159
Department(s) Laboratory of Phytopathology
EPS
Publication type Dissertation, externally prepared
Publication year 1995
Keyword(s) plantenziekteverwekkende schimmels - deuteromycotina - gewasbescherming - fungiciden - pesticiden - pesticidenwerking - ongediertedodende eigenschappen - moniliaceae - plant pathogenic fungi - deuteromycotina - plant protection - fungicides - pesticides - pesticidal action - pesticidal properties - moniliaceae
Categories Plant Pathogenic Fungi
Abstract

Botrytis cinerea Pers. ex Fr., the causal agent of grey mould, is one of the most ubiquitous plant pathogens. The fungus is of high economic importance in various major crops and during transport and storage of agricultural products. Protectant fungicides such as chlorothalonil, dichlofluanid, folpet or thiram are widely used for disease control. Since their introduction in the 1960S/1970s, systemic fungicides such as the benzimidazoles or dicarboximides have been used extensively. However, their effectivity is severely hampered by a rapid development of resistance to these fungicides.

Antifungal activity of N1-substituted azoles was discovered in the late 1960s. Since then, a large number of azole derivatives have been developed as agricultural fungicides and antimycotics. The mode of action of these azoles is based on inhibition of the cytochrome P450-dependent sterol 14α-demethylase (P450 14DM ), an enzyme of the sterol pathway. By now, sterol demethylation inhibitors (DMIs) comprise about 35 commercial products and represent the most important group of systemic fungicides. DMI fungicides are commonly applied in control of rusts, powdery mildews and scabs. Only few of them are registered for control of B. cinerea . This is ascribed to a limited field performance for which the reasons are not evident. A replacement of dicarboximides or benzimidazoles by DMI fungicides would be attractive, since DMIs have a number of advantages over other fungicides including a relatively low resistance risk.

The aim of the study described in this thesis is to identify factors involved in the limited field performance of DMI fungicides towards B. cinerea . The study is restricted to the largest group of DMIs, the triazoles. Before presenting results obtained in this study a literature review on the biology and control of B. cinerea , the mode of action and mechanisms involved in selective fungitoxicity of DMI fungicides, and factors responsible for discrepancies in laboratory and field pesticide performance is given ( chapter 1 ). Biological activity of triazoles towards B. cinerea was investigated in vitro with cell-free assays ( chapters 3 - 4 ) and toxicity assays ( chapters 3 - 7) and in vivo on different hosts ( chapter 5 ).

The first step in the research presented in this thesis was the development of a cell-free assay for sterol synthesis from the model fungus Penicillium italicum ( Moniliaceae ) according to a method described for Aspergillus fumigatus ( chapter 2 ). Subsequently, the method developed was adopted for Botrytis cinerea ( chapter 3). This assay was used to study the relationship between chemical structure and biological activity of commercial and experimental triazoles and stereoisomers of cyproconazole,SSF-109 and tebuconazole towards B. cinerea ( chapter 4 ). On basis of these experiments intrinsic inhibitory activity of triazoles towards P450 14DM of the target pathogen was determined. in following experiments, factors which influence In vivo activity or field performance were Investigated. In vivo activity of triazole fungicides towards B. cinerea was tested on foliar-sprayed tomato plants and diptreated grape berries, and compared with that of selected benzimidazoles and dicarboximides ( chapter 5 ). in this context was also studied whether biological compounds could specifically antagonize activity of triazoles ( chapter 5 ). Variation in triazole sensitivity of the pathogen population was studied for field isolates (121) of B. cinerea collected during 1970 - 1992 in Europe and israel ( chapter 6 ). in this survey less sensitive populations were detected. A putative mechanism of resistance to DMI fungicides in field isolates with a relatively low sensitivity to DMIs was studied and compared with that operating in laboratory-generated DMI-resistant mutants ( chapter 7 ). Effects of inhibitors of mitochondrial respiration and multisite-inhibiting fungicides on accumulation of tebuconazole were tested to evaluate their potency as candidate compounds in synergistic mixtures with DMIs ( chapter 7 ). The development of synergistic mixtures may improve biological activity of DMI fungicides in control of B. cinerea.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.