Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 320026
Title Selective separation of fine particles by a new flotation approach
Author(s) Mulleneers, H.A.E.; Koopal, L.K.; Bruning, H.; Rulkens, W.H.
Source Separation Science and Technology 37 (2002). - ISSN 0149-6395 - p. 2097 - 2112.
DOI https://doi.org/10.1081/SS-120003503
Department(s) Environmental Technology
Physical Chemistry and Colloid Science
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2002
Keyword(s) polluted dredged material - remediation technique - size - coal - performance - complex - soils - ores
Abstract Fine particles often create problems in flotation applications. In this article a new laboratory flotation system for the selective separation of small particles was designed and tested. The device contains an active counter current sedimentation that should prevent entrainment of the fine hydrophilic particles. The cell was used to selectively float fine particles in the size range 2-25 mum. To create small bubbles dissolved air was used. The study is linked to the problems that fine particles cause by remediation of soils and sediments. Therefore, small silica and small-oxidized carbon black (MT-OX) particles were used as model system. Three different frothers, sodium dodecylsulfate (SDS), Aerofroth, and Montanol were applied to obtain a stable froth. The results showed that the equipment works excellent to separate the fine MT-OX particles from the small silica particles. Especially with Aerofroth as frother, the Grade of the flotation experiments was extremely high (98.1%). The MT-OX Recovery was best with SDS (74.6%). The new flotation design provides a promising method for the remediation of contaminated sediments and soils. Next to that it offers an interesting option to separate fine particles and powders in other industrial applications.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.