Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 320131
Title Reconstructing late quaternary fluvial process controls in the upper aller valley (north Germany) by means of numerical modeling
Author(s) Veldkamp, A.; Berg, M. van den; Dijke, J.J. van; Berg van Saparoea, R.M. van den
Source Netherlands journal of geosciences 81 (2002)3-4. - ISSN 0016-7746 - p. 375 - 388.
DOI https://doi.org/10.1017/s0016774600022666
Department(s) Laboratory of Soil Science and Geology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2002
Keyword(s) geomorfologie - kwartaire afzettingen - tektoniek - terrassen - dalen - simulatiemodellen - geologische sedimentatie - duitsland - rivieren - geomorphology - rivers - geological sedimentation - quaternary deposits - tectonics - terraces - valleys - simulation models - germany - terrace stratigraphy - maas record - europe - uplift - system
Categories Geomorphology
Abstract The morpho-genetic evolution of the upper Aller valley (Weser basin, North Germany) was reconstructed using geological and geomorphologic data integrated within a numerical process model framework (FLUVER-2). The current relief was shaped by Pre-Elsterian fluvial processes, Elsterian and Saalian ice sheets, followed by Weichselian fluvial processes. Structural analysis based on subsurface data and morphological interpretations were used to reconstruct uplift/subsidence rates. A detailed analysis led to the hypothesis that we are dealing with either a NNW-SSE or a WSW-ENE oriented compression leading to uplift in the upper Aller valley. It is also hypothesised that the NNW-SSE compression might have caused strike-slip deformation leading to differential block movement and tilt.Two different uplift rate scenarios were reconstructed and used as a variable parameter in numerical modelling scenarios simulating the Late Quaternary longitudinal dynamics of the Aller. Each different scenario was run for 150.000 years and calibrated to the actual setting. The resulting model settings were consequently evaluated for their plausibility and validity. Subsequently, regional semi-3D simulations of valley development were made to test the two tectonic stress hypotheses. Differential tectonic uplift and regional tilt seems to have played an important role in shaping the current valley morphology in the upper Aller. Unfortunately, due to the uncertainties involved, we were unable to discriminate between the two postulated tectonic stress scenarios.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.