Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 320171
Title Energy transfer in Light-Harvesting complexes LHCII and CP29 of spinach studied with Three Pulse Echo Peak Shift and transient grading
Author(s) Salverda, J.M.; Vengris, M.; Krueger, B.P.; Scholes, G.D.; Czarnoleski, A.R.; Novoderezhkin, V.; Amerongen, H. van; Grondelle, R. van
Source Biophysical Journal 84 (2003). - ISSN 0006-3495 - p. 450 - 465.
DOI https://doi.org/10.1016/S0006-3495(03)74865-6
Department(s) Biophysics
Publication type Refereed Article in a scientific journal
Publication year 2003
Keyword(s) domain resonant spectroscopies - photosystem-ii membranes - chlorophyll-a/b protein - major plant antenna - photon-echo - green plants - excitation-energy - room-temperature - absorption-spectroscopy - rhodobacter-sphaeroides
Abstract Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential,: fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5-1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b Chl b,energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b Chl, bland fast Chl b --> Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A(3) and B-3. For LHCII, the observed rates can best be understood if the same pair, A(3) and B-3, is involved in both fast Chl b Chl b and fast Chl a Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophylli, binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.