Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 320412
Title Associative Nitrogen Fixation and Root Exudation - What is Theoretically Possible in the Rhizosphere?
Author(s) Jones, D.L.; Farrar, J.; Giller, K.E.
Source Symbiosis 35 (2003)1-3. - ISSN 0334-5114 - p. 19 - 38.
Department(s) Plant Production Systems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2003
Keyword(s) zea-mays-l - organic-compounds - re-sorption - carbon-flow - amino-acids - wheat roots - soil - transporters - malate - plants
Abstract Root exudation is a key driver of many rhizosphere processes including nitrogen fixation by diazotrophic bacteria residing in the soil. We critically review our knowledge of rhizosphere carbon flow and determine the extent to which rhizodeposition could fuel associative N2 fixation by soil microorganisms. We conclude that most estimates of rhizosphere C flow are fundamentally flawed due to the use of inappropriate methodology combined with a poor mechanistic understanding of root C flow. Using a mathematical model, we predicted that rhizodeposition could under optimal conditions support the fixation of between 0.2 to 4 kg N ha-1 year-1 which is in good agreement with experimentally derived values for natural ecosystems (0.05 to 5 kg N ha-1 y-1). Our model indicated that fixation was highly dependent upon the number of potential N2 fixers in the rhizosphere relative to the total microbial population. If N2 fixer populations could be enhanced, we predict that fixation rates may reach up to 20 kg N ha-1 y-1 given highly optimal conditions which again agree with experimentally derived results. We conclude that whilst the potential for rhizodeposition-driven N2 fixation in the soil is small in comparison to inorganic and symbiotic-N2 fixation inputs, it may be of importance in N-limited ecosystems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.