Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 321167
Title Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina
Author(s) Dalstra, H.J.P.; Swart, K.; Debets, A.J.M.; Saupe, S.J.; Hoekstra, R.F.
Source Proceedings of the National Academy of Sciences of the United States of America 100 (2003). - ISSN 0027-8424 - p. 6616 - 6621.
DOI https://doi.org/10.1073/pnas.1030058100
Department(s) Laboratory of Genetics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2003
Keyword(s) fungus podospora-anserina - heterokaryon incompatibility - spore killer - filamentous fungi - neurospora - protein - elements - products - meiosis - analog
Abstract In the filamentous fungus Podospora anserina, two phenomena are associated with polymorphism at the het-s locus, vegetative incompatibility and ascospore abortion. Two het-s alleles occur naturally, het-s and het-S. The het-s encoded protein is a prion propagating as a self-perpetuating amyloid aggregate. When prion-infected [Het-s] hyphae fuse with [Het-S] hyphae, the resulting heterokaryotic cells necrotize. [Het-s] and [Het-S] strains are sexually compatible. When, however, a female [Het-s] crosses with [Het-S], a significant percentage of het-S spores abort, in a way similar to spore killing in Neurospora and Podospora. We report here that sexual transmission of the [Het-s] prion after nonisogamous mating in the reproductive cycle of Podospora is responsible for the killing of het-S spores. Progeny of crosses between isogenic strains with distinct wild-type or introduced, ectopic het-s/S alleles were cytologically and genetically analyzed. The effect of het-s/S overexpression, ectopic het-s/S expression, absence of het-s expression, loss of [Het-s] prion infection, and the distribution patterns of HET-s/S-GFP proteins were categorized during meiosis and ascospore formation. This study unveiled a het-S spore-killing system that is governed by dosage of and interaction between the [Het-s] prion and the HET-S protein. Due to this property of the [Het-s] prion, the het-s allele acts as a meiotic drive element favoring maintenance of the prion-forming allele in natural populations.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.