Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 321649
Title On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells
Author(s) Boekel, M.A.J.S. van
Source International Journal of Food Microbiology 74 (2002)1-2. - ISSN 0168-1605 - p. 139 - 159.
DOI https://doi.org/10.1016/S0168-1605(01)00742-5
Department(s) Product Design and Quality Management Group
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2002
Keyword(s) log-logistic model - listeria-monocytogenes - heat-resistance - survival curves - yersinia-enterocolitica - salmonella-enteritidis - predictive models - bovine-milk - temperature - kinetics
Abstract This paper evaluates the applicability of the Weibull model to describe thermal inactivation of microbial vegetative cells as an alternative for the classical Bigelow model of first-order kinetics; spores are excluded in this article because of the complications arising due to the activation of dormant spores. The Weibull model takes biological variation, with respect to thermal inactivation, into account and is basically a statistical model of distribution of inactivation times. The model used has two parameters, the scale parameter alpha (time) and the dimensionless shape parameter beta. The model conveniently accounts for the frequently observed nonlinearity of semilogarithmic survivor curves, and the classical first-order approach is a special case of the Weibull model. The shape parameter accounts for upward concavity of a survival curve (beta <1), a linear survival curve (beta = 1), and downward concavity (beta > 1). Although the Weibull model is of an empirical nature, a link can be made with physiological effects. beta <1 indicates that the remaining cells have the ability to adapt to the applied stress, whereas beta > 1 indicates that the remaining cells become increasingly damaged. Fifty-five case studies taken from the literature were analyzed to study the temperature dependence of the two parameters. The logarithm of the scale parameter a depended linearly on temperature, analogous to the classical D value. However, the temperature dependence of the shape parameter beta was not so clear. In only seven cases, the shape parameter seemed to depend on temperature, in a linear way. In all other cases, no statistically significant (linear) relation with temperature could be found. In 39 cases, the shape parameter beta was larger than 1, and in 14 cases, smaller than 1. Only in two cases was the shape parameter b = 1 over the temperature range studied, indicating that the classical first-order kinetics approach is the exception rather than the rule. The conclusion is that the Weibull model can be used to model nonlinear survival curves, and may be helpful to pinpoint relevant physiological effects caused by heating. Most importantly, process calculations show that large discrepancies can be found between the classical first-order approach and the Weibull model. This case study suggests that the Weibull model performs much better than the classical inactivation model and can be of much value in modelling thermal inactivation more realistically, and therefore, in improving food safety and quality. (C) 2002 Elsevier Science B.V. All rights reserved.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.