Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 325294
Title Early detection of drought stress in grass swards with imaging spectroscopy
Author(s) Schut, A.G.T.; Ketelaars, J.J.M.H.
Source NJAS Wageningen Journal of Life Sciences 51 (2003)3. - ISSN 1573-5214 - p. 319 - 337.
DOI https://doi.org/10.1016/S1573-5214(03)80022-2
Department(s) Plant Production Systems
Agrosystems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2003
Keyword(s) grasveld - lolium perenne - droogte - stress - spectroscopie - spectrometrie - reflectiefactor - grass sward - lolium perenne - drought - stress - spectroscopy - spectrometry - reflectance - grown perennial ryegrass - leaf water status - spectral reflectance - red edge - leaves - vegetation - cotton
Categories Crop Husbandry
Abstract The potential of an experimental imaging spectroscopy system with high spatial (0.28-1.45 mm2) and spectral (5-13 nm) resolution was explored for early detection of drought stress in grass. A climate chamber experiment was conducted with nine Lolium perenne L. mini swards with drought stress treatments at two nitrogen levels. Images were recorded once every two days. Growth was monitored by changes in ground cover (GC), index of reflection intensity (IRI) and wavelength position of and gradient at inflection points, as estimated from images. Drought stress increased leaf dry matter and sugar content. Drought stress decelerated and ultimately reversed GC evolution, and kept IRI at low values. In contrast to unstressed growth, all absorption features narrowed and became shallower under drought stress. The inflection points near 1390 and 1500 nm were most sensitive to drought stress. Differences between drought stress and control swards were detected shortly before leaf water content dropped below 80%. The evolution of inflection point wavelength positions reversed under drought stress, except for the inflection point at the red edge where the shift to longer wavelengths during growth accelerated. The relation between inflection points at 705 and 1390 nm differentiated unstressed swards at an early growth stage from drought-stressed swards in a later growth stage
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.