Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 327013
Title The activity of hyperthermophilic glycosynthases is significantly enhanced at acidic pH
Author(s) Perugino, G.; Trincone, A.; Giordano, A.; Oost, J. van der; Kaper, T.; Rossi, M.; Moracci, M.
Source Biochemistry 42 (2003). - ISSN 0006-2960 - p. 8484 - 8493.
Department(s) Microbiology
Publication type Refereed Article in a scientific journal
Publication year 2003
Keyword(s) agrobacterium beta-glucosidase - oligosaccharide synthesis - sulfolobus-solfataricus - glycosyl transfer - glycosidase - intermediate - pyrococcus - mechanism - evolution - protein
Abstract We have previously shown that the hyperthermophilic glycosynthase from Sulfolobus so fataricus (Ssbeta-glyE387G) can promote the synthesis of branched oligosaccharides from activated beta-glycosides, at pH 6.5, in the presence of 2 M sodium formate as an external nucleophile. In an effort to increase the synthetic potential of hyperthermophilic glycosynthases, we report a new method to reactivate the Ssbeta-glyE387G glycosynthase and two novel mutants in the nucleophile of the P-glycosidases from the hyperthermophilic Archaea Thermosphaera aggregans (Tabeta-gly) and Pyrococcus furiosus (CelB). We describe here that, at pH 3.0 and low concentrations of sodium formate buffer, the three hyperthermophilic glycosynthases show k(cat) values similar to those of the wild-type enzymes and 17-fold higher than those observed at the usual reactivation conditions in 2 M sodium formate at pH 6.5. Moreover, at acidic pH the three reactivated mutants have wide substrate specificity and improved efficiency in the synthetic reaction. The data reported suggest that the reactivation conditions modify the ionization state of the residue acting as an acid/base catalyst. This new reactivation method can be of general applicability on hyperthermophilic glycosynthases whose intrinsic stability allows their exploitation as synthetic tools at low pH.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.