Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 328005
Title Exploration of factors limiting biomass estimation by polarimetric radar in tropical forests
Author(s) Quiñones Fernández, M.J.; Hoekman, D.H.
Source IEEE Transactions on Geoscience and Remote Sensing 42 (2004)1. - ISSN 0196-2892 - p. 86 - 104.
DOI https://doi.org/10.1109/TGRS.2003.815402
Department(s) Soil Physics, Ecohydrology and Groundwater Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) colombian amazon - backscatter - vegetation - model - sar - growth
Abstract Direct inversion of radar return signals for forest biomass estimation is limited by signal saturation at medium biomass levels (roughly 150 ton/ha for P-band). Disturbing factors such as forest structural differences-and, notably, at low biomass levels, terrain roughness, and soil moisture variation-cause further complications. A new and indirect inversion approach is proposed that may circumvent such problems. Using multifrequency polarimetric radar the forest structure can be assessed accurately. Ecological relationships link these structures with biomass levels, even for high biomass levels. The LIFEFORM model is introduced as a new approach to transform field observations of the complex tropical forest into input files for the theoretical UTARTCAN polarimetric backscatter model. The validity of UTARTCAN for a wide range of forest structures is shown. Backscatter simulations for a wide range of forest structures, terrain roughness, and soil moisture clearly show the limitations of the direct approach and the validity of the proposed indirect approach up to very high levels of biomass.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.