Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 328494
Title The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel
Author(s) Asten, P.J.A. van; Zelfde, J.A. van 't; Zee, S.E.A.T.M. van der; Hammecker, C.
Source Geoderma 119 (2004)3-4. - ISSN 0016-7061 - p. 233 - 247.
Department(s) Crop and Weed Ecology
Sub-department of Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) saline-sodic soil - forage cultivation - reclamation - gypsum - dissolution - scheme - crops - field - zone
Abstract Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done with some of Sahel's most alkaline-sodic rice soils from the Office du Niger (Mali) and Foum Gleita (Mauritania). Soils were irrigated using non-saline carbonate-rich irrigation water typical for the Sahel and percolation was maintained at 3-4 mm day(-1). After one cropping season, soils had turned from sodic to non-sodic, and pH had dramatically decreased, most notably in the upper soil layers. The changes were most important in the Office du Niger soil due to its small buffering capacity (small CEC and CaCO3). Alkalinity consumed by above-ground matter of the rice plants (grain and straw) equaled or exceeded alkalinity added via irrigation in a zero percolation scenario. Hence, for a climate and irrigation water that are typical for the Sahel, removal of straw and grain prevents or substantially reduces further alkalinization of the soils if percolation is absent. However, in case of some percolation, straw can best be incorporated in the topsoil of calcareous soils as it accelerates de-alkalinization and de-sodication through increased dissolution of calcite. No evidence was found indicating that ferrolysis altered the short-term alkalinity balance of the studied soils to any extent. Our results are in line with recent field studies and suggest a de-alkalinization of sodic-alkaline flooded (rice) soils in the Sahel. (C) 2003 Elsevier B.V. All rights reserved.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.