Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 328497
Title Status of cross-flow membrane emulsification and outlook for industrial application
Author(s) Gijsbertsen-Abrahamse, A.J.; Padt, A. van der; Boom, R.M.
Source Journal of Membrane Science 230 (2004)1-2. - ISSN 0376-7388 - p. 149 - 159.
DOI https://doi.org/10.1016/j.memsci.2003.11.006
Department(s) Food Process Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) shirasu-porous-glass - in-water emulsions - microchannel emulsification - droplet formation - ceramic membranes - microspheres - size - pore
Abstract Cross-flow membrane emulsification has great potential to produce monodisperse emulsions and emulsions with shear sensitive components. However, until now, only low disperse phase fluxes were obtained. A low flux maybe a limiting factor for emulsion production on a commercial scale. Therefore, the effects of membrane parameters on the disperse phase flux are estimated. Besides, the effects of these parameters on the droplet size and droplet size distribution are qualitatively described. Wetting properties, pore size and porosity mainly determine the droplet size (distribution). Membrane morphology largely determines the disperse phase flux. As an example, industrial-scale production of culinary cream was chosen to evaluate the required membrane area of different types of membranes: an SPG membrane, an alpha-Al2O3 membrane and a microsieve. Due to the totally different morphologies of these membranes, the fraction of active pores is I for a microsieve and is very low for the other membranes. The choice of the optimal membrane did not depend on the production strategy: either to produce large quantities or to produce monodisperse emulsions, the best suitable was a microsieve with an area requirement of around I m(2). In general, the total membrane resistance should be low to obtain a large disperse phase flux. In contrast, the membrane resistance should be high to obtain monodisperse emulsions when using membranes with a high porosity. (C) 2003 Elsevier B.V. All rights reserved.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.