Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 332627
Title Wound-induced and bacteria-induced xylem blockage in roses, Astilbe and Viburnum
Author(s) Loubaud, M.; Doorn, W.G. van
Source Postharvest Biology and Technology 32 (2004)3. - ISSN 0925-5214 - p. 281 - 288.
DOI https://doi.org/10.1016/j.postharvbio.2003.12.004
Department(s) AFSG Quality in Chains
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) cut chrysanthemum flowers - polyphenol oxidase - cathechol oxidase - peroxidase - occlusion - tissue - stems
Abstract We previously concluded that the xylem blockage that prevents water uptake into several cut flowers is mainly due to the presence of bacteria, whilst in chrysanthemum and Bouvardia we observed a xylem occlusion that was mainly due to a wound-reaction of the plant. We have further tested which of these two mechanisms was dominant in Astilbe,Viburnum and rose flowers. Astilbe x arendsii (cvs. Erica and Glut) flowers were stored dry in plastic bags (24 h at 5 degreesC, 100% RH) and placed in water at 20 degreesC without recutting the steins. The dry storage treatment considerably hastened a wounding-induced xylem occlusion in the stems. A 5 h pulse treatment with inhibitors of peroxidase (hydroquinone) and catechol oxidase (tropolone and 2,3-dihydroxynaphtalene), prior to dry storage, considerably delayed the xylem blockage. The 24 h dry storage treatment had no effect in rose (Rosa x hybrida cv. Red One), and Viburnum opulus (cv. Roseum). These flowers were therefore directly placed in water, with and without enzyme inhibitors. Except hydroquinone, all tested enzyme inhibitors reduced bacterial growth in the vase water. The latter chemicals could therefore not be used to distinguish between a plant-induced and a bacterial occlusion of the xylem. Hydroquinone had no effect on the time to wilting in roses, nor in Viburnum. It considerably delayed wilting in Astilbe flowers that were directly placed in water after harvest. It is concluded that the blockage in Astilbe is mainly due to the plant-induced xylem occlusion. The xylem occlusion in the tested rose and Viburnum cultivar was apparently not due to this mechanism. (C) 2004 Elsevier B.V. All rights reserved.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.