Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 332764
Title The role of interfacial rheological properties on Ostwald ripening in emusions
Author(s) Meinders, M.B.J.; Vliet, T. van
Source Advances in Colloid and Interface Science 108-109 (2004). - ISSN 0001-8686 - p. 119 - 126.
Department(s) AFSG Food Quality
Physics and Physical Chemistry of Foods
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) filled albumin microspheres - biochemical-characterization - contrast agent - stability - stabilization - simulation - proteins - kinetics
Abstract The coarsening of emulsion droplets by Ostwald ripening is studied by means of numerical simulations in which time-dependent (elastic) interfacial behaviour is taken into account. Theoretical calculations on the dissolution of a single emulsion droplet in an infinite medium at saturated conditions show that the dissolution process can be stopped only when the interfacial tension goes to zero. When interfacial stress relaxation is included, which prevents a continuous zero interfacial tension, no stabilisation of the dissolution process is observed and the droplet dissolves completely. In the case of an ensemble of droplets, numerical calculations on the coarsening of emulsion droplets with finite interfacial elasticity show that a stable situation occurs at finite interfacial tensions of the droplets. This applies for a closed system with the same assumptions as those made in the Lifshitz–Slyozov–Wagner (LSW) theory. The coarsening behaviour strongly depends on the saturation of the dispersed phase in the continuous phase. If the system is in contact with atmosphere, saturation will finally go to unity and stabilisation will only occur for zero interfacial tension of the droplets. For an ensemble of droplets in a closed system, the calculations show that stress–relaxation of the interface causes the Ostwald-ripening process to continue, so no stable situation is reached. Stabilisation can only be accomplished by adding insoluble species to the dispersed phase, by using particles as stabilisers or by micro-encapsulation of the emulsion droplets by thick insoluble interfacial layers, which have a thickness that is in the order of the radius of the droplet.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.