Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 333188
Title Metabolic engineering of monoterpende biosysnthesis: two step production of (+)-trans-Isopiperitenol by tobacco
Author(s) Lücker, J.; Schwab, W.; Franssen, M.C.R.; Plas, L.H.W. van der; Bouwmeester, H.J.; Verhoeven, H.A.
Source The Plant Journal 39 (2004)1. - ISSN 0960-7412 - p. 135 - 145.
DOI https://doi.org/10.1111/j.1365-313X.2004.02113.x
Department(s) Laboratory of Plant Physiology
Organic Chemistry
PRI Bioscience
EPS-3
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) peppermint mentha-piperita - functional expression - limonene enantiomers - linalool synthase - cdna isolation - s-linalool - plants - mint - (-)-limonene - cloning
Abstract Monoterpenoid biosynthesis in tobacco was modified by introducing two subsequent enzymatic activities targeted to different cell compartments. A limonene-3-hydroxylase (lim3h) cDNA was isolated from Mentha spicata L. 'Crispa'. This cDNA was used to re-transform a transgenic Nicotiana tabacum'Petit Havana' SR1 (tobacco) line expressing three Citrus limon L. Burm. f. (lemon) monoterpene synthases producing (+)-limonene, gamma-terpinene and (-)-beta-pinene as their main products. The targeting sequences of these synthases indicate that they are probably localized in the plastids, whereas the sequence information of the P450 hydroxylase indicates targeting to the endoplasmatic reticulum. Despite the different location of the enzymes, the introduced P450 hydroxylase proved to be functional in the transgenic plants as it hydroxylated (+)-limonene, resulting in the emission of (+)-trans-isopiperitenol. Some further modifications of the (+)-trans-isopiperitenol were also detected, resulting in the additional emission of 1,3,8-p-menthatriene, 1,5,8-p-menthatriene, p-cymene and isopiperitenone.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.