Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 333960
Title Anaerobic microbial dehalogenation
Author(s) Smidt, H.; Vos, W.M. de
Source Annual Review of Microbiology 58 (2004). - ISSN 0066-4227 - p. 43 - 73.
DOI https://doi.org/10.1146/annurev.micro.58.030603.123600
Department(s) Microbiology
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) desulfitobacterium-frappieri pcp-1 - polymerase-chain-reaction - reductively dechlorinates tetrachloroethene - bacterium rhodopseudomonas-palustris - chloroethene-contaminated sites - chlorinated aliphatic-compounds - sp strain cbdb1 - vinyl-chloride - sp-nov - de
Abstract The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenating-or completely mineralizing-halogenated hydrocarbons by fermentative, oxidative, or reductive pathways. In particular, research of the past decade has focused on halorespiring anaerobes, which couple the dehalogenation by dedicated enzyme systems to the generation of energy by electron transport-driven phosphorylation. Significant advances in the biochemistry and molecular genetics of degradation pathways have revealed mechanistic and structural similarities between dehalogenating enzymes from phylogenetically distinct anaerobes. The availability of two almost complete genome sequences of halorespiring isolates recently enabled comparative and functional genomics approaches, setting the stage for the further exploitation of halorespiring and other anaerobic dehalogenating microbes as dedicated degraders in biological remediation processes.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.