Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 334097
Title Modelling plant responses to elevated CO2: how important is leaf area index?
Author(s) Ewert, F.
Source Annals of Botany 93 (2004)2004. - ISSN 0305-7364 - p. 619 - 627.
DOI https://doi.org/10.1093/aob/mch101
Department(s) Plant Production Systems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) radiation use efficiency - crop simulation-models - rising atmospheric co2 - light-use efficiency - canopy photosynthesis - spring wheat - ecosystem dynamics - growth-response - carbon-dioxide - climate-change
Abstract Background and Aims The problem of increasing CO2 concentration [CO2] and associated climate change has [CO2] on plants. While variation in growth and productivity is generated much interest in modelling effects of closely related to the amount of intercepted radiation, largely determined by leaf area index (LAI), effects of elevated [CO2] on growth are primarily via stimulation of leaf photosynthesis. Variability in LAI depends on climatic and growing conditions including [CO2] concentration and can be high, as is known for agricultural crops which are specifically emphasized in this report. However, modelling photosynthesis has received much attention and photosynthesis is often represented inadequately detailed in plant productivity models. Less emphasis has been placed on the modelling of leaf area dynamics, and relationships between plant growth, elevated [CO2] and LAI are not well understood. This Botanical Briefing aims at clarifying the relative importance of LAI for canopy assimilation and growth in biomass under conditions of rising [CO2] and discusses related implications for process-based modelling. Model A simulation exercise performed for a wheat crop demonstrates recent experimental findings about canopy assimilation as affected by LAI and elevation of [CO2]. While canopy assimilation largely increases with LAI below canopy light saturation, effects on canopy assimilation of [CO2] elevation are less pronounced and tend to decline as LAI increases. Results from selected model-testing studies indicate that simulation of LAI is often critical and forms an important source of uncertainty in plant productivity models, particularly under conditions of limited resource supply. Conclusions Progress in estimating plant growth and productivity under rising [CO2] is unlikely to be achieved without improving the modelling of LAI. This will depend on better understanding of the processes of substrate allocation, leaf area development and senescence, and the role of LAI in controlling plant adaptation to environmental changes. (C) 2004 Annals of Botany Company.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.