Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 334859
Title Defense responses of Fusarium oxysporum to 2,4-Diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens
Author(s) Schouten, A.; Berg, G. van den; Edel-Hermann, V.; Steinberg, C.; Gautheron, N.; Alabouvette, C.; Vos, C.H. de; Lemanceau, P.; Raaijmakers, J.M.
Source Molecular Plant-Microbe Interactions 17 (2004)11. - ISSN 0894-0282 - p. 1201 - 1211.
DOI https://doi.org/10.1094/MPMI.2004.17.11.1201
Department(s) Laboratory of Phytopathology
PRI Bioscience
EPS-2
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) genetic diversity - abc transporters - take-all - biocontrol - resistance - populations - biosynthesis - sensitivity - strains - tomato
Abstract A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the E oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant E oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated that deacetylation of 2,4-DAPG to the less fungitoxic derivatives monoacetylphloroglucinol and phloroglucinol is among the initial mechanisms of 2,4-DAPG degradation. Production of fusaric acid, a known inhibitor of 2,4-DAPG biosynthesis in P fluorescens, differed considerably among both 2,4-DAPG-sensitive and -tolerant E oxysporum strains, indicating that fusaric acid production may be as important for 2,4-DAPG-sensitive as for -tolerant E oxysporum strains. Whether 2,4-DAPG triggers fusaric acid production was studied for six E oxysporum strains; 2,4-DAPG had no significant effect on fusaric acid production in four strains. In two strains, however, sublethal concentrations of 2,4-DAPG either enhanced or significantly decreased fusaric acid production. The implications of 2,4-DAPG degradation, the distribution of this trait within E oxysporum and other plant-pathogenic fungi, and the consequences for the efficacy of biological control are discussed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.