Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 335170
Title Conformation and orientation of a protein folding intermediate trapped by adsorption
Author(s) Engel, M.F.M.; Visser, A.J.W.G.; Mierlo, C.P.M. van
Source Proceedings of the National Academy of Sciences of the United States of America 101 (2004)31. - ISSN 0027-8424 - p. 11316 - 11321.
Department(s) Biochemistry
Publication type Refereed Article in a scientific journal
Publication year 2004
Keyword(s) bovine alpha-lactalbumin - hydrogen-exchange - stability - surface - binding - nmr
Abstract Although adsorption-induced conformational changes of proteins play an essential role during protein adsorption on interfaces, detailed information about these changes is lacking. To further the current understanding of protein adsorption, in this study, the orientation, conformation, and local stability of bovine a-lactalbumin (BLA) adsorbed on polystyrene nanospheres is characterized at the residue level by hydrogen/deuterium exchange and 2D NMR spectroscopy. Most of the adsorbed BLA molecules have conformational properties similar to BLA molecules in the acid-induced molten globule state (A state). A folding intermediate of BLA is thus induced and trapped by adsorption of the protein on the hydrophobic interface. Several residues, clustered on one side of the adsorbed folding intermediate of BLA, have altered amide proton exchange protection factors compared to those of the A state of BLA. This side preferentially interacts with the interface and includes residues in helix C, the calcium binding site, and part of the beta-domain. Local unfolding of this interacting part of the adsorbed protein seems to initiate the adsorption-induced unfolding of BLA. Adsorption-induced protein unfolding apparently resembles more the mechanical unfolding of a protein than the global unfolding of a protein as induced by denaturant, pH, or pressure. 2D macromolecular crowding prevented the minority of adsorbed BLA molecules, which arrived late at the interface, to unfold to the A state. Protein adsorption is a novel and challenging approach to probe features of the free energy landscapes accessible to unfolding proteins.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.